

ENGINEERING STRUCTURAL CALCULATIONS For Gillette 110" Frame Genset

September 8, 2016

110" Frame Genset Models:

SP-1200 SPJD-1550 SP-1500 SPJD-2100 SPJD-1250

Designed with reference from: 2014 Florida Building Code 5th Edition with 2016 Supplements

ASCE 7 - Minimum Design Loads for Buildings and Other Structures
2005 Aluminum Association Design Manual
ANSI/AISC 360-05 Specifications for Structural Steel Buildings

Matthew T. Baldwin, P.E. Florida License #64608

Project Information

Project Name/Model # - Gillette 110" Frame Genset

Project Number

Project Description - 180mph Windload Calculations

Project Location - Customer -

Mounting Location - Ground

Enclosure Materials

Roof Beam - 14 Gage Truss - CRS

Roof Panels - 0.080 Aluminum Panel - 5052-H34
Wall Panels - 0.080 Aluminum Panel - 5052-H34

Components

GenSet Manufacturer - Gillette Generators, Inc.

GenSet Size and Model - 110" Frame Supported by - Base

Base - Bent Aluminum Frame

Fasteners/Hardware

<u>r actorior cyrrai awarc</u>			
		Bolt Size	Grade/Finish
Panels	-	5/16" - 18	Grade 18-8/SS
Enclosure to Base	-	5/16" - 18	Grade 18-8/SS
			IN T. BA
			LICENSE
			NO. 64698 1.17
Specification Requirer	<u>nents</u>		EAHHAR BILLE
Wind Speed	- 180	mph (Greater of Design or Site)	July . (2000)
Exposure Category	- D		STATE OF
			FLORIDA CA
			MINSIONAL ENLIN
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Matthew T. Baldwin, P.E. Florida License #64608

Enclosure Dimensions & Component Weights

Gillette 110" Frame Genset

Roof Style- Flat

Enclosure Dimensions (ft)

<u>Wall</u>	Length (ft)		Height (ft)
1	4.02	X	5.36
2	4.02	X	5.36
3	12.18	Х	5.36
4	12.18	Х	5.36

Base Dimensions

Width (Wall 1/2 Side)	=	48	in
Length (Wall 3/4 Side)	=	110	in
Height	=	7	in

Roof/Eave Information

Roof Pitch Angle - (θ) = 0.0 Degrees Eave/Roof Height - h = 5.36

(T3) =

Wall 1 Wall 3 Wall 4 Wall 2 Plan

Wall 1/2 Elevation

Wall 4

Wall 3

Structure Areas

Base Side 3/4

Walls 1/2 Area Walls 3/4 Area Roof Area	-	(w3) =	65.3	$ft^2 =$	9,401	in ²
Base Side 1/2		(T1) =	336.0	in2		

770.0

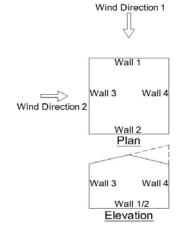
in2

Component Weights

Genset = 0 lbs (Varies, so will use zero to be conservative/most uplift to resist)

Enclosure = 225 lbs (Based on Aluminum to be conserative/most uplift to resist)

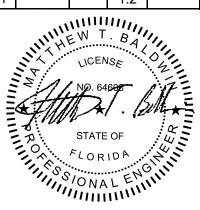
Base Frame = 175 lbs (Based on Aluminum to be conserative/most uplift to resist)


MWFRS Net Pressures

Gillette 110" Frame Genset

Wind

Directional Procedure method from ASCE 7 are utilized in these calculations.


Enclosed Enclosure Classification Exposure Category D **Basic Wind Speed** (V) 180 mph Wind Directionality Factors (K_d) 0.85 **Internal Pressure Coefficients** $(GC_{pi}) \pm 0.18$ Velocity Pressure Exposure Coefficient (K_z) 1.03 Roof Mean Height Above Ground Level 5.94 (z) ft Velocity Pressure (q) 72.63 psf

Wind Direction 1									
		Enclosure							
		Wall #			Roof				
		4 0 284			Parallel to Ridge				
		ı	1 2 3&4		$(C_p)^r$	1 (Distance F	rom Windward	Edge)	(C _p)2
		Windward	Leeward	Side	0 to 2.7	2.7 to 5.4	5.4 to 10.7	> 10.7	(Op)2
Background Response Factor	(Q)	0.98	0.98	0.96			0.98		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.91		
External Pressure Coefficients	(C_p)	0.80	-0.249	-0.70	-0.90	-0.90	-0.50	-0.3	-0.18
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	40.0	-29.6	-59.2	-72.8	-72.8	-46.2	-33.0	-25.0
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	66.1	-3.4	-33.1	-46.6	-46.6	-20.1	-6.8	1.1

Wind Direction 2										
		Enclosure								
		Wall #			Roof - Normal To Ridge				Ridge	
		3	3 4 1&		(C _p)1	(Distance	From Windward	l Edge)	(C _p)2	
		Windward	Leeward Side	Side	0 to 2.7	> 2.7			(Op)2	
Background Response Factor	(Q)	0.96	0.96	0.98			0.96	6		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.9	1		
External Pressure Coefficients	(C_p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	39.7	-46.0	-59.5	-81.6	-59.2			-24.9	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	65.8	-19.9	-33.4	-55.5	-33.1			1.2	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Roof

Gillette 110" Frame Genset

Critical Loads & Pressures

Wind Pressures

= 0.01 psiDownforce 1.206 psf Uplift -81.65 psf = -0.57 psi

Section Properties

14 Gage Truss - CRS

Cross Sectional Area (A) $= 0.48 \text{ in}^2$ Moment of Inertia - x $(I_x) = 0.62 \text{ in}^4$ Moment of Inertia - y $(I_{\nu}) =$ N/A in⁴ Section Modulus - x $(S_x) =$ 0.64 Section Modulus - y $(S_v) =$ Radius of Gyration - x 1.13 in Radius of Gyration - y = N/A in Polar Moment of Inertia N/A in⁴ (J) Weight of Beam $(\omega) = 0.12$ lbs/in Modulus of Elasticity = 2.90E+04 ksi (E) Safety Factor $(n_u) =$ 1.95 Safety Factor (n_y) 1.65 1.00 Coefficient (k_t) Tensile Ultimate Strength $(F_{tu}) = 58 \text{ ksi}$ Tensile Yield Strength (F_{tv})

= 36 ksi Compressive Yield Strength (F_{cv}) = 22 ksi Shear Ultimate Strength $(F_{su}) = 36 \text{ ksi}$

Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length $(L_i) = 47.75 \text{ in}$ Load Spanned Width $(W_i) = 54.88$ in

Interior Beam Calculated Forces

Distributed Loads

Weight of Beam 0.120 lbs/in $(\omega) =$ Wind Load Downforce $(W_d) =$ 0.460 lbs/in Wind Load Uplift Force $(W_u) =$ -31.113 lbs/in

Matthew T. Baldwin, P.E. Florida License #64608

Shear Forces (Maximum at End)

 $(V_b) =$ 2.87 Beam Weight Shear lbs Wind DownForce Shear $(V_{wd}) =$ 11.0 lbs Wind Uplift Shear $(V_{wu}) =$ -742.8 lbs **Total Shear Downward** 13.8 lbs **Total Shear Upward** 740.0 lbs

Design Shear $(V_{bi}) =$ 740.0 lbs

Stress Forces (Bending)

 $(M_b) =$ Beam Weight Moment 23 lb-in $(M_d) =$ Wind Downforce Moment lb-in 65 Wind Uplift Moment $(M_u) =$ -4,434 lb-in 88 lb-in **Total Moments Downward Total Moments Upward** 4,411 lb-in **Design Moment** $(M_T) =$ 4,411 lb-in **Design Stress** $(\sigma_{bi}) =$ 6,892 psi

Interior Beam Design Calculations

Allowable Shear Strength

 $(S_1) =$ -20.08 Slenderness Limit 1 $(S_2) =$ Slenderness Limit 2 102.40 Slenderness Ratio (S) =18.0 Allowable Shear Stress 9,856

psi Allowable Shear Strength $(V_n) =$ 4,751 lbs

Conclusion

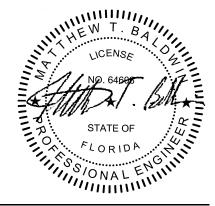
lbs (V_{bi}) $< (V_n)$ 4,751 OK 740 lbs

Allowable Stresses For Tension And Compression (Bending)

Tension

 $(F_t) =$ Allowable Tensile Stress 16,000 psi

Compression


Slenderness Limit 1 $(S_1) =$ 25.0 Slenderness Limit 2 $(S_2) =$ 125.0 Slenderness Ratio (S) =42.3

Allowable Compressive Stress $(F_c) =$ 13,039 psi

> Allowable Compressive Stress is the controlling Therefore, $(F_b) =$ <u>13,039</u> failure design

Conclusion

 (σ_{bi}) 6,892 psi < (F_b) 13,039 <u>OK</u> psi

Matthew T. Baldwin, P.E. Florida License #64608

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift $(R) = 7,051 \text{ in}^2$

Roof Uplift Calculated Forces

To be conservative, the weight of the roof frame and panels is neglected.

Weight of Accessories $(\omega_a) = 0$ lbs Wind Load Uplift Force $(w_{ru}) = -3,998$ lbs Total Roof Design Uplift $(W_{ru}) = -2,399$ lbs

Mounting Hardware - Roof Frame to Wall Panels

 Screws Along Length - 1 Side
 =
 6
 5/16" - 18
 - Grade 18-8/SS

 Screws Along Width - 1 Side
 =
 3
 5/16" - 18
 - Grade 18-8/SS

 Total Mounting Screws
 =
 18
 5/16" - 18
 - Grade 18-8/SS

Entire Roof Uplift Design Calculations

Grade 18-8 Ultimate Strength 150,000 psi 5/16 Bolt Nominal Diameter 0.255 in 5/16 Bolt Effective Area 0.051 in² 5/16 SBolt Threads per Inch 18 Washer Nominal Diameter 0.875 in Wall Panel Tensile Ult. Strength 34 ksi Wall Panel Tensile Yield Strength = 26 ksi Safety Factor 3 Wall Panel Nominal Thickness 0.062 in Maximum Tensile Strength 439.2 lbs Maximum Shear/Bearing Strength = 408.6 lbs Max. Tensile Load per Screw 408.6 lbs

Max. Total Screws Tensile Strength $(P_{ts}) = 7,354$ lbs

Conclusion

 (W_{ru}) 2,399 lbs < (P_{ts}) 7,354 lbs **OK**

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions

Critical Panel Length $(L_p) = 54.88$ in Critical Panel Width $(W_p) = 48$ in

Roof Panel Uplift Calculated Forces

Distributed Loads

Wind Load Uplift Force $(w_{pu}) = 896.1$ lbs

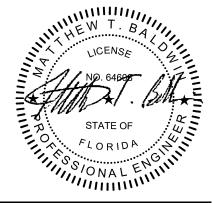
Mounting Hardware - Roof Panel to Roof Frame

Screws Along Length - 1 Side = 3 5/16" - 18 - Grade 18-8/SS Screws Along Width - 1 Side = 3 5/16" - 18 - Grade 18-8/SS

Matthew T. Baldwin, P.E. Florida License #64608

Roof Panel Uplift Design Calculations

Grade 410 Ultimate Strength	=	150,000	psi
5/16 Bolt Nominal Diameter	=	0.255	in
5/16 Bolt Effective Area	=	0.051	in ²
5/16 Bolt Threads per Inch	=	18	
Washer Nominal Diameter	=	0.875	in
Roof Panel Tensile Ult. Strength	=	34	ksi
Roof Panel Tensile Yield Strength	=	26	ksi
Safety Factor	=	3	
Roof Panel Nominal Thickness	=	0.080	in


Max. Total Screws Tensile Strength $(P_{ts}) =$

	F	Roof Frame		
Maximum Tensile Strength	=	439.2	lbs	(Accounts for screw pull-over strength)
Maximum Shear/Bearing Strength	=	408.6	lbs	
Max. Tensile Load per Screw	=	408.6	lbs	

4,903 lbs

Conclusion

 (w_{pu}) 896 lbs < (P_{ts}) 4,903 lbs <u>**OK**</u>

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Walls/Columns

Gillette 110" Frame Genset

Critical Wind Load Pressures and Roof Forces

Walls 1 & 2

Maximum Pressures Acting:

Toward 66.1 = 0.4593 psi psf Away -59.5 psf = -0.4132 psi

Walls 3 & 4

Maximum Pressures Acting:

Toward 65.8 psf = 0.4571 psi Away -59.2 psf = -0.4113 psi

Critical Wall Panel Dimensions

Critical/Maximum Panel Width 45.5 in Critical/Maximum Panel Height 64.0 in

Section Properties

0.080 Aluminum Panel - 5052-H34

Cross Sectional Area (A) = in^2 3.79 Moment of Inertia - x $(I_x) =$ 0.05 in⁴ Section Modulus - x 0.80 in^3 Radius of Gyration - x $(r_x) =$ 0.11 in Modulus of Elasticity (E) 1.02E+04 ksi = Safety Factor $(n_u) =$ 1.95 Factor of Safety $(n_v) =$ 1.65 Coefficient - Tension Member $(k_t) = 1.0$ Tensile Ultimate Strength $(F_{tu}) =$ 34 ksi Tensile Yield Strength $(F_{tv}) =$ 26 ksi Shear Ultimate Strength $(F_{su}) =$ 20 ksi Compressive Yield Strength $(F_{cv}) =$ 24

Critical Wall Panel Calculated Forces

Maximum Wind Pressure on Walls

Maximum + Wind Pressure 0.4593 psi Maximum - Wind Pressure -0.4132 psi

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Wind Shear Distributed Loads on Critical Panel

Maximum + Wind Shear 20.9 lbs/in Maximum - Wind Shear -18.8 lbs/in

Total Wind Shear on Critical Panel

Total Panel Design Shear $(V_{ww}) =$ 1,337.4 lbs

Matthew T. Baldwin, P.E. Florida License #64608

ksi

Critical Panel Roof Load (Roof to Wall)

Axial Roof Load $(W_{wr}) = 0.0$ lbs

Mounting Hardware - Wall Panel to Wall Panel

To be conservative, the 'wall to roof' and 'wall to floor' connections are negleted.

Bolts Along Length - 1 Side = 4 5/16" - 18 - Grade 18-8/SS

Total Mounting Screws = 8 5/16" - 18 - Grade 18-8/SS

Wall Panel Design Calculations

Mounting Hardware - Shear and Tension

Grade 18-8/SS = 150,000 psi

Grade 18-8/SS Shear Strength = 30,000 psi (Includes Reduction Factor)
Grade 18-8/SS Tensile Strength = 57,000 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.0510 in² Shear Strength per Bolt = 1,530 lbs

Shear Strength per Bolt = 1,530 lbs Tensile Strength per Bolt = 2,907 lbs

Total Bolts Shear Strength $(R_{vb}) = 12,240$ lbs Total Bolts Tensile Strength $(R_{tb}) = 23,256$ lbs

Conclusion

 (V_{ww}) 1,337 lbs $< (R_{vb})$ 12,240 lbs <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Enclosure to Base/Tank or Pad

Gillette 110" Frame Genset

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	69.5	psf =	0.4829	psi
Wall 3 or 4 -	59.2	psf =	0.4113	psi
Roof Uplift -	72.8	psf =	0.5053	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	69.5	psf =	0.4829	psi
Wall 3 or 4 -	33.1	psf =	0.2297	psi
Roof Uplift -	46.6	psf =	0.3238	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	85.7	psf =	0.5952	psi
Wall 1 or 2 -	59.5	psf =	0.4132	psi
Roof Uplift -	81.6	psf =	0.5670	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4	-	85.7	psf =	0.5952	psi
Wall 1 or 2 -		33.4	psf =	0.2316	psi
Roof Uplift -	-	55.5	psf =	0.3854	psi

Enclosure Critical Dimensions & Weights

Total Enclosure Weight	$(VV_t) =$	225	IDS
Walls 1/2 Area -	(w1) =	3102.8	in ²
Walls 3/4 Area -	(w3) =	9401.0	in ²
Roof Area -	(R) –	7050.8	in ²

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	1,498	lbs
Wall 3 or 4 -	=	3,867	lbs
Roof Uplift -	=	3.563	lbs

Matthew T. Baldwin, P.E. Florida License #64608

(Includes all components)

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 -	=	1,498	lbs
Wall 3 or 4 -	=	2,160	lbs
Roof Uplift -	=	2,283	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	5,596	lbs
Wall 1 or 2 -	=	1,282	lbs
Roof Uplift -	=	3,998	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 -	=	5,596	lbs
Wall 1 or 2 -	=	719	lbs
Roof Uplift -	=	2.717	lbs

Enclosure Overturn Forces

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	1,042	lbs
Overturn on Walls 3/4	=	2,391	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2	=	658	lbs
Overturn on Walls 3/4	=	1.324	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	3,213	lbs
Overturn on Walls 1/2	=	1.256	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4	=	2,829	lbs
Overturn on Walls 1/2	=	685	lhs

 $(O_E) =$ 3,213 lbs Acting On Wall 3/4 Design Overturn Force

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, half the bolt connections along the adjacent walls are neglected.

No. of Bolt Connections Along Wall 3/4 = 7 5/16" - 18 - Grade 18-8/SS

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi

30,000 psi Grade 18-8 Shear Strength (Includes Reduction Factor)

5/16" Bolt Effective Area 0.051 in² Shear Strength per Bolt = 1.530lbs

 $(R_{vb}) = 10,710 \text{ lbs}$ Total Bolts Shear Strength

Conclusion

 (O_F) 3.213 lbs $< (R_{\nu})$ 10.710 lbs

Matthew T. Baldwin, P.E. Florida License #64608