

For Gillette 78" Frame Genset

September 8, 2016

78" Frame Genset Models:

PR-350 SP-520 PR-550 SP-620 SP-410 SPJD-600

Designed with reference from: 2014 Florida Building Code 5th Edition with 2016 Supplements

ASCE 7 - Minimum Design Loads for Buildings and Other Structures
2005 Aluminum Association Design Manual

ANSI/AISC 360-05 Specifications for Structural Steel Buildings

Project Information

Project Name/Model # - Gillette 68" Frame Genset

Project Number

Project Description - 180mph Windload Calculations

Project Location -

Customer -

Mounting Location - Ground

Enclosure Materials

Roof Panels - 0.080 Aluminum Panel - 5052-H34 Wall Panels - 0.062 Aluminum Panel - 5052-H34

Components

GenSet Manufacturer - Gillette Generators, Inc.

GenSet Size and Model - 68" Frame Supported by - Base

Base - Bent Aluminum Frame

Fasteners/Hardware

1 dotorior o/ riar a war o			
	<u> </u>	Bolt Size	Grade/Finish
Panels	-	5/16" - 18	Grade 18-8/SS
Enclosure to Base	-	5/16" - 18	Grade 18-8/SS
			IN T. BA
			LICENSE
		ı	= 1/No.64698 1.47=
Specification Requiren	<u>nents</u>		EAHAD BALE
Wind Speed	- 180	mph (Greater of Design or Site)	The state of the s
Exposure Category	- D		STATE OF
			FLORIDA
			MINSIONAL ENLIN
			·///////////

Enclosure Dimensions & Component Weights

Gillette 78" Frame Genset

Roof Style- Flat

Enclosure Dimensions (ft)

<u>Wall</u>	Length (ft)		Height (ft)
1	3.5	Х	4.15
2	3.5	X	4.15
3	7.84	X	4.15
4	7.84	Х	4.15

Base Dimensions

Width (Wall 1/2 Side)	=	42	in
Length (Wall 3/4 Side)	=	78	in
Height	=	4	in

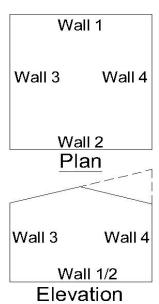
Roof/Eave Information

Roof Pitch Angle -	$(\theta) =$	0.0	Degrees
Eave/Roof Height -	h =	4.15	

Structure Areas

Base Side 3/4

Walls 1/2 Area Walls 3/4 Area Roof Area	-	(w3) =	32.5	$ft^2 =$	4,685	in ²
Base Side 1/2		(T1) =	168.0	in2		


312.0

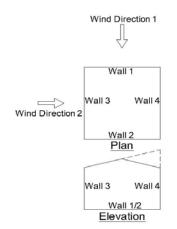
in2

(T3) =

Component Weights

Genset Enclosure	=	0 150	lbs lbs	(Varies, so will use zero to be conservative/most uplift to resist) (Based on Aluminum to be conserative/most uplift to resist)
Rase Frame	_	100	lhs	(Rased on Aluminum to be conserative/most unlift to resist)

MWFRS Net Pressures


Gillette 78" Frame Genset

Wind

Directional Procedure method from ASCE 7 are utilized in these calculations.

Enclosure Classification Enclosed Exposure Category D **Basic Wind Speed** (V) 180 mph Wind Directionality Factors (K_d) 0.85 Internal Pressure Coefficients (GC_{pi}) ± 0.18 Velocity Pressure Exposure Coefficient (K_z) 1.03 Roof Mean Height Above Ground Level (z) 4.48 ft

Velocity Pressure (q) 72.63 psf

Wind Direction 1									
					Enclos	sure			
			Wall #		Roof				
		1	2	3&4	Parallel to Ridge		je		
		, I	2	2 304		$(C_p)1$ (Distance From Windward Edge)		Edge)	(C _p)2
		Windward	Leeward	Side	0 to 2.1	2.1 to 4.2	4.2 to 7.8		$(O_p)^2$
Background Response Factor	(Q)	0.98	0.98	0.97			0.98		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.91		
External Pressure Coefficients	(C_p)	0.80	-0.288	-0.70	-0.91	-0.89	-0.51		-0.18
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	40.1	-32.2	-59.4	-73.4	-72.1	-47.1		-25.0
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	66.2	-6.1	-33.3	-47.3	-45.9	-20.9		1.1

Wind Direction 2										
						Enclosu				
			Wall #			Roof - Normal To Ridge				
		3 4 1&2		4 182						
					(C _p)1	(Distance	From Windward	d Edge)	(C _p)2	
		Windward	Leeward	Side	0 to 2.1	> 2.1			, ,,	
Background Response Factor	(Q)	0.97	0.97	0.98			0	.97		
Gust Effect Factors	(G)	0.91	0.91	0.91			0	.91		
External Pressure Coefficients	(C_p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC _{pi}) - psf	(Net _{p+})	39.9	-46.2	-59.6	-81.9	-59.4			-25.0	
Net Pressures with - (GC pi) - psf	(Net _{p-})	66.0	-20.0	-33.4	-55.8	-33.3			1.2	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Roof

Gillette 78" Frame Genset

Critical Loads & Pressures

Wind Pressures

Downforce 1.16 psf = 0.01 psi Uplift -81.91 psf = -0.57 psi

Section Properties

0.080 Aluminum Panel - 5052-H34

Modulus of Elasticity (E) = 1.02E+04 ksi Safety Factor (n_u) = 1.95Safety Factor (n_y) = 1.65Coefficient (k_t) = 1.00

Tensile Ultimate Strength $(F_{tu}) = 34 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 26 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 24 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 20 \text{ ksi}$

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift $(R) = 3,951 \text{ in}^2$

Roof Uplift Calculated Forces

Wind Load Uplift Force $(w_{ru}) = -2,248$ lbs Total Roof Design Uplift $(W_{ru}) = -2,248$ lbs

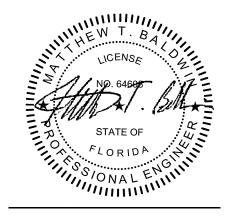
Mounting Hardware - Roof Frame to Wall Panels

Screws Along Length - 1 Side = 6 5/16" - 18 - Grade 18-8/SS Screws Along Width - 1 Side = 3 5/16" - 18 - Grade 18-8/SS Total Mounting Screws = 18 5/16" - 18 - Grade 18-8/SS

Entire Roof Uplift Design Calculations

Grade 18-8/SS 150,000 psi 5/16" Bolt Nominal Diameter 0.255 in 5/16" Bolt Effective Area 0.051 in² 5/16" Bolt Threads per Inch 18 Washer Nominal Diameter 0.875 in Wall Panel Tensile Ult. Strength 34 ksi 26 Wall Panel Tensile Yield Strength ksi Safety Factor 3 Wall Panel Nominal Thickness 0.062 in Maximum Tensile Strength 439.2 lbs Maximum Shear/Bearing Strength = 408.6 lbs

Max. Total Screws Shear Strength $(P_{ts}) = 7,354$ lbs


Conclusion

Max. Shear Load per Screw

 (W_{ru}) 2,248 lbs < (P_{ts}) 7,354 lbs Page 4 - 1

408.6

lbs

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions

Critical Panel Length $(L_p) = 78$ in Critical Panel Width $(W_p) = 42$ in

Roof Panel Uplift Calculated Forces

Distributed Loads

Wind Load Uplift Force $(w_{pu}) = 1.863.5$ lbs

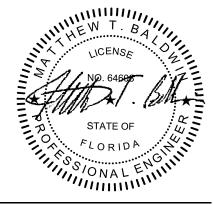
Mounting Hardware - Roof Panel to Roof Frame

Screws Along Length - 1 Side = 8 5/16" - 18 - Grade 18-8/SS Screws Along Width - 1 Side = 4 5/16" - 18 - Grade 18-8/SS

Roof Panel Uplift Design Calculations

Grade 18-8 Ultimate Strength 150,000 psi 5/16 Bolt Nominal Diameter 0.255 in 5/16 Bolt Effective Area 0.051 in² 5/16 SBolt Threads per Inch 18 Washer Nominal Diameter 0.875 in Roof Panel Tensile Ult. Strength 34 ksi Roof Panel Tensile Yield Strength = 26 ksi Safety Factor 3 Roof Panel Nominal Thickness 0.080 in

Maximum Tensile Strength = A39.2 | Ibs (Accounts for screw pull-over strength)


Maximum Shear/Bearing Strength = 408.6 | Ibs

Max. Tensile Load per Screw = 408.6 lbs

Max. Total Screws Tensile Strength $(P_{ts}) = 9.806$ lbs

Conclusion

 (w_{pu}) 1,863 lbs $< (P_{ts})$ 9,806 lbs **OK**

Structural Calculations - Walls/Columns

Gillette 78" Frame Genset

Critical Wind Load Pressures and Roof Forces

Walls 1 & 2

Maximum Pressures Acting:

Toward 66.2 psf = 0.4598 psi Away -59.6 psf = -0.4137 psi

Walls 3 & 4

Maximum Pressures Acting:

Toward 66.0 psf = 0.4585 psi Away -59.4 psf = -0.4125 psi

Critical Wall Panel Dimensions

Critical/Maximum Panel Width = 39.5 in Critical/Maximum Panel Height = 48.0 in

Section Properties

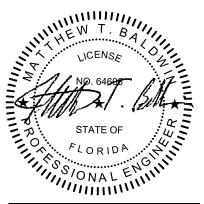
0.062 Aluminum Panel - 5052-H34

Cross Sectional Area 2.58 in² Moment of Inertia - x 0.05 Section Modulus - x $(S_x) =$ 0.88 in^3 Radius of Gyration - x $(r_x) =$ 0.14 in Modulus of Elasticity (E) 1.02E+04 ksi Safety Factor $(n_u) =$ 1.95 Factor of Safety $(n_v) =$ 1.65 Coefficient - Tension Member $(k_t) = 1.0$ Tensile Ultimate Strength $(F_{tu}) =$ ksi Tensile Yield Strength $(F_{tv}) =$ 26 ksi Shear Ultimate Strength $(F_{su}) =$ 20 ksi Compressive Yield Strength $(F_{cv}) =$ ksi

Critical Wall Panel Calculated Forces

Maximum Wind Pressure on Walls

Maximum + Wind Pressure = 0.4598 psi Maximum - Wind Pressure = -0.4137 psi


Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Wind Shear Distributed Loads on Critical Panel

Maximum + Wind Shear = 18.2 lbs/in Maximum - Wind Shear = -16.3 lbs/in

Total Wind Shear on Critical Panel

Total Panel Design Shear $(V_{ww}) = 871.8$ lbs

Critical Panel Roof Load (Roof to Wall)

Axial Roof Load $(W_{wr}) = 0.0$ lbs

Mounting Hardware - Wall Panel to Wall Panel

To be conservative, the 'wall to roof' and 'wall to floor' connections are negleted.

Bolts Along Length - 1 Side = 3 5/16" - 18 - Grade 18-8/SS

Total Mounting Screws = 6 5/16" - 18 - Grade 18-8/SS

Wall Panel Design Calculations

Mounting Hardware - Shear and Tension

Grade 18-8/SS = 150,000 psi

Grade 18-8/SS Shear Strength = 30,000 psi (Includes Reduction Factor)
Grade 18-8/SS Tensile Strength = 57,000 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.0510 in²

Shear Strength per Bolt = 1,530 lbs Tensile Strength per Bolt = 2,907 lbs

Total Bolts Shear Strength $(R_{vb}) = 9,180$ lbs

Total Bolts Tensile Strength $(R_{tb}) = 17,442$ lbs

Conclusion

 (V_{ww}) 872 lbs $< (R_{vb})$ 9,180 lbs <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Enclosure to Base

Gillette 78" Frame Genset

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	72.3	psf =	0.5019	psi
Wall 3 or 4 -	59.4	psf =	0.4125	psi
Roof Uplift -	73.4	psf =	0.5098	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	72.3	psf =	0.5019	psi
Wall 3 or 4 -	33.3	psf =	0.2310	psi
Roof Uplift -	47.3	psf =	0.3282	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	86.0	psf =	0.5975	psi
Wall 1 or 2 -	59.6	psf =	0.4137	psi
Roof Uplift -	81.9	psf =	0.5688	psi

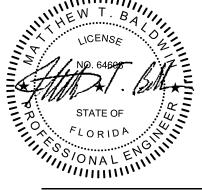
Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	86.0	psf =	0.5975	psi
Wall 1 or 2 -	33.4	psf =	0.2321	psi
Roof Uplift -	55.8	psf =	0.3872	psi

Enclosure Critical Dimensions & Weights

Total Enclosure Weigh	$it \ (W_t) =$	150	lbs
Walls 1/2 Area -	(w1) =	2091.6	in ²
Walls 3/4 Area -	(w3) =	4685.2	in ²
Roof Area -	(R) =	3951 4	in ²

(Includes all components)


Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	1,050	lbs
Wall 3 or 4 -	=	1,933	lbs
Roof Uplift -	=	2.014	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 -	=	1,050	lbs
Wall 3 or 4 -	=	1,082	lbs
Roof Uplift -	=	1,297	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	2,800	lbs
Wall 1 or 2 -	=	865	lbs
Roof Uplift -	=	2,248	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 -	=	2,800	lbs
Wall 1 or 2 -	=	486	lbs
Roof Uplift -	=	1,530	lbs

Enclosure Overturn Forces

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	1,135	lbs
Overturn on Walls 3/4	=	2,003	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2	=	776	lbs
Overturn on Walls 3/4	=	1.140	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	2,634	lbs
Overturn on Walls 1/2	=	1.278	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4	=	2,275	lbs
Overturn on Walls 1/2	=	744	lhs

<u>Design Overturn Force</u> $(O_E) = 2.634$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, half the bolt connections along the adjacent walls are neglected.

No. of Bolt Connections Along Wall 3/4 = 6 5/16" - 18 - Grade 18-8/SS

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi


Grade 18-8 Shear Strength = 30,000 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.051 in² Shear Strength per Bolt = 1,530 lbs

Total Bolts Shear Strength $(R_{vb}) = 9,180$ lbs

Conclusion

 (O_E) 2,634 lbs < (R_v) 9,180 lbs **OK**

