

LIQUID COOLED DIESEL ENGINE GENERATOR SET

60 HZ MODEL **SPVD-5000**

N# 11		STANDBY
Model	HZ	120°C RISE
SPVD-5000-60 HERTZ	60	500

All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.

UL2200, UL1446, UL508, UL142, UL498

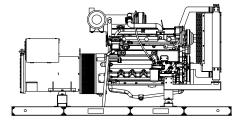
NFPA 110, 99, 70, 37

All generator sets meet NFPA-110 Level 1, when equipped with the necessary accessories and installed per NFPA standards.

NEC 700, 701, 702, 708

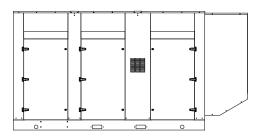
NEMA ICS10, MG1, ICS6, AB1

ANSI C62.41, 27, 59, 32, 480, 40Q, 81U, 360-05



ASCE 7-05 & 7-10

All generator sets meet 180 MPH rating.



EPA 40CFR Part 60, 1048, 1054, 1065, 1068

"OPEN" GEN-SET

There is no enclosure, so gen-set must be placed within a weather protected area, uninhabited by humans or animals, with proper ventilation. Silencer not supplied, as installation requirements are not known. However, this item is available as optional equipment.

"LEVEL 2" HOUSED GEN-SET

Full aluminum weather protection and superior sound attenuation for specific low noise applications. Critical grade muffler is standard.

GENERATOR RATINGS

GENERATOR	VOLTAGE		PH HZ	HZ	120°C RISE ST	ANDBY RATING	POWER LEAD
MODEL	L-N	L-L		• • •	KW/KVA	AMP	CONNECTIONS
SPVD-5000-3-2	120	208	3	60	500/625	1736	12 LEAD LOW WYE
SPVD-5000-3-3	120	240	3	60	500/625	1505	12 LEAD HIGH DELTA
SPVD-5000-3-4	277	480	3	60	500/625	752	12 LEAD HIGH WYE
SPVD-5000-3-5	127	220	3	60	500/625	1642	12 LEAD LOW WYE
SPVD-5000-3-16	346	600	3	60	500/625	602	4 LEAD HIGH WYE

RATINGS: All single phase gen-sets are dedicated 4 lead windings, rated at unity (1.0) power factor. All three phase gen-sets are 12 lead windings, rated at .8 power factor. 120° C "STANDBY RATINGS" are strictly for gen-sets that are used for back-up emergency power to a failed normal utility power source. This standby rating allows varying loads, with no overload capability, for the entire duration of utility power outage. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based 120°C (standby) R/R winding temperature, within a maximum 40°C ambient condition. Generators operated at standby power ratings must not exceed the temperature rise limitation for class H insulation system, as specified in NEMA MG1-22.40. Specifications & ratings are subject to change without prior notice.

APPLICATION & ENGINEERING DATA FOR MODEL SPVD-5000-60 HZ

GENERATOR SPECIFICATIONS

ManufacturerStamford Electric Generators
Model & Type HCI534E-311, 4 Pole, 12 Lead, Three Phase
HCI534D-311, 4 Pole, 12 Lead, 480V, Three Phase
HCI534D-17, 4 Pole, 6 Lead, 600V, Three Phase
Exciter Brushless, shunt excited
Voltage Regulator Solid State, HZ/Volts
Voltage Regulation
Frequency
Frequency Regulation± ½% (1/2 cycle, no load to full load)
Unbalanced Load Capability100% of standby amps
One Step Load Acceptance
Total Stator and Load InsulationClass H, 180°C
Temperature Rise 120°C R/R, standby rating @ 40°C amb.
3 Ø Motor Starting @ 30% Voltage Dip (208-240V)1340 kVA
3 Ø Motor Starting @ 30% Voltage Dip (480V)1750 kVA
3 Ø Motor Starting @ 30% Voltage Dip (600V)1520 kVA
Bearing
CouplingDirect flexible disc.
Total Harmonic Distortion Max 3½% (MIL-STD705B)
Telephone Interference Factor Max 50 (NEMA MG1-22)
Deviation Factor Max 5% (MIL-STD 405B)
AlternatorSelf ventilating and drip-proof
Ltd. Warranty Period

GENERATOR FEATURES

- World Renown Stamford Electric Generator having UL-1446 certification.
- Full generator protection with Basler DGC-2020 controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- Full load testing on all engine-generator sets, before shipping.

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE

ManufacturerVOLVO-PENTA
Model and TypeTAD1641GE, 4 cycle, liquid Cooled
AspirationTurbo After Cooler, Air to Air
Charged Air Cooled System Air to Air
Cylinder Arrangement
Displacement Cu. In. (Liters)984 (16.1)
Bore & Stroke in (Cm)5.67 x 6.50 (14.4 x 16.5)
Compression Ratio
Main BearingsTin Overlay with Babbit Backing
Cylinder HeadCast Iron with overhead Cam
PistonsAluminum Alloy with Graphite Coating
CrankshaftInduction Hardened, Heat Treated Forged
Valves Heat Treated and Hardened Exhaust Valve
Governor Electronic, EMS 2.2
Frequency Regulation
Air CleanerDry, Replaceable Cartridge
Engine Speed
Max Power, bhp (kwm) Standby685 (504)
BMEP: psi (MPa) Standby302 (2.1)
Ltd. Warranty Period

FUEL SYSTEM

Type	Diesel Fuel Oil (ASTM No. 2-D)
Combustion System	Direct Injection
Fuel Injection Pump	Electronic, Delphi E3
24 VDC Coolant heaters	Optional Equipment
Fuel Filter	Yes with Water Separator

FUEL CONSUMPTION

GAL/HR (LITER/HR)	STANDBY
100% LOAD	36.8 (139.3)
75% LOAD	26.8 (101.4)
50% LOAD	18.0 (68.1)

OIL SYSTEM

Type	Full Pressure
Oil Pan Capacity qt. (L)	
Oil Pan Cap. W/ filter qt. (L)	44.3 (42)
Oil Filter	

ELECTRICAL SYSTEM

Recommended battery to -18°C (0° F):(2) 12 VDC, BCI# 31, Max. Dimensions: 14"lg x 6 3/4" wi x 10" hi, with standard round posts. Min output 1000 CCA. Battery tray (max. dim. at 15"lg x 7"wi). This model has (2) battery trays, (2) hold down straps, (2) sets of battery cables, and (1) battery charger. Installation of (2) 12VDC starting batteries connected in series for 24VDC output is required, with possible higher AMP/HR rating, as described above, if the normal environment temperature averages -13° F (-25°C) or cooler.

CERTIFICATIONS

All engines are EPA emissions certified. All emergency stationary diesel engines are Tier II compliant.

APPLICATION & ENGINEERING DATA FOR MODEL SPVD-5000-60 HZ

COOLING SYSTEM

Type of System Air to Air, Charge	ed Air Cooler
Coolant PumpPre-lubricated	
Cooling Fan Type	
Fan Diameter inches (cm)	
Fan drive ratio	
Ambient Capacity of Radiator °F (°C)	131 (55)
Engine Jacket Coolant Capacity gal. (L)	
Radiator Coolant Capacity gal. (L)	
Water Pump Capacity gpm (L/min)	
Heat Reject Coolant: Btu/min	
Air to Air Heat Reject, BTU/min.	7,109
Heat Radiated to Ambient, BTU/min	
Low Radiator Coolant Level Shutdown	Standard
Note: Coolant temp. shut-down switch setting at 228°F (1	09°C) with
50/50 (water/antifreeze) mix.	

COOLING AIR REQUIREMENTS

Combustion Air cfm (m³/min)	1,617 (45.8)
Max Air Intake Restrictions:	
Clean Air Cleaner, KPA (psi)	5 (1.5)
Radiator Cooling Air, SCFM (m³/min)2	4,175 (684)

EXHAUST SYSTEM

Exhaust Outlet Size	8"
Max. Back Pressure in KPA (in. H2O)	10 (40)
Exhaust Flow, at rated KW, CFM (m3/min)	3899 (110)
Exhaust Temp, (Stack) °F (°C)	893 (479)

SOUND LEVELS MEASURED IN dB(A)

	Open	Level 2	
	Set	Encl.	
Level 2, Critical Silencer	94	81	
Level 3, Hospital Silencer	89	75	

Note: Open sets (no enclosure) have optional silencer system choices due to unknown job-site applications. Level 2 enclosure has installed critical silencer with upgrade to Level 3 hospital silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft.(305m) above 3000 ft. (914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F(5.6°C) above 104°F (40°C)

DIMENSIONS AND WEIGHTS

	Open	Level 2
_	Set	Enclosure
Length in (cm)	152 (368)	186 (472)
Width in (cm)	72 (183)	72 (183)
Height in (cm)	80 (203)	94 (239)
3 Ø Net Weight lbs (kg)	8700 (3946)	11200 (5080)
3 Ø Ship Weight lbs (kg).	9050 (4105)	11500 (5216)

BASLER DGC-2020 DIGITAL MICROPROCESSOR CONTROLLER

Basler DGC-2020

The "2020" controller is a highly advanced integrated gen-set control system for single gen-set applications. This controller includes a backlit LCD display which continuously displays the status of the engine and generator at all times.

Basler "DGC-2020" includes: Generator metering (including three phase) • Engine – Generator protections including IEEE-[27] under voltage, [32] power, [40] loss of excitation, [59] over voltage, [81] over and under frequency, Exercise timer • SAE J1939 engine ECU communications • Expansion capabilities for both inputs and outputs with expansion • Remote communications through RS-485 to Basler's RDP110 remote Display panel • (16) programmable contact inputs • (15) programmable contact outputs- (3) for up to 30AmpDC and (12) for up to 2 Amp DC • Illuminated Text Display • Front panel menu scroll buttons • Front panel operation mode buttons for STOP, RUN and AUTO • Alarm Silence and Lamp Test buttons

This controller includes expansion features including, RS485 (using MODBUS), direct USB connection with PC, expansion optioned using BESTCOMSPlus for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

Further expansion is available by adding the optional RDP-110 remote display panel module. This featured device will allow Four programmable LEDs (2) alarms and (2) pre-alarms • (17) alarms and pre-alarms displayed from Basler controller • audible alarm horn •

lamp test and alarm silence buttons • RD100 local power supply inputs of either 12vdc or 24vdc • connects through Basler controller through RS-485 communications protocol • conduit box included for (2) mounting configurations- either surface mount or semi-flush mounting.

STANDARD FEATURES FOR MODEL SPVD-5000-60 HZ

STANDARD FEATURES

CONTROL PANEL:

Basler DGC-2020 digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- Low oil pressure
- Engine fail to start
- High engine temp
- Engine over speed
- Low Radiator Level
- Engine under speed
- Three auxiliary alarms
- Over & under voltage
- Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Fuel filter • Full flow Oil filter • Air filter • Fuel pump • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump • Thermostat • Pusher fan and guard • Exhaust manifold • Electronic Governor • 24 VDC battery charging alternator • Flexible fuel and exhaust connectors • Vibration isolators • Open coolant recovery system with 50/50 water to anti-freeze mixture • flexible oil & radiator hose • Shut-down sensors for low oil pressure, high coolant temp., low coolant level, high ambient temp.

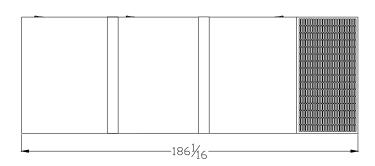
Design & specifications subject to change without prior notice. Dimensions shown are approximate. Contact Gillette for certified drawings. DO NOT USE DIMENSIONS FOR INSTALLATION PURPOSES.

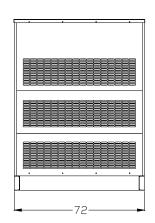
AC GENERATOR SYSTEM:

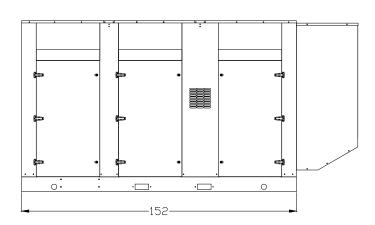
AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

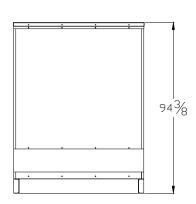
VOLTAGE REGULATOR:

1% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation


DC ELECTRICAL SYSTEM:


Battery trays • Battery cables • Battery hold down straps • 3-stage battery charger with float, absorption, & bulk automatic charge stages


WEATHER / SOUNDPROOF ALUMINUM HOUSING:


Corrosion Resistant Protection consisting of:

- (9) Heated and Agitated Wash Stages
- Zinc Phosphate Etching-Coating Stage
- Final Baked on Enamel Powder Coat
- 18/8 Stainless Steel Hardware

VOLVO PENTA GENSET ENGINE

TAD1641GE

484 kW (658 hp) at 1500 rpm, 565 kW (768 hp) at 1800 rpm, acc. to ISO 3046

The TAD1641GE is a powerful, reliable and economical Generating Set Diesel Engine built on the dependable in-line six design.

Durability & low noise

Designed for easiest, fastest and most economical installation. Well-balanced to produce smooth and vibration-free operation with low noise level.

To maintain a controlled working temperature in cylinders and combustion chambers, the engine is equipped with piston cooling. The engine is also fitted with replaceable cylinder liners and valve seats/guides to ensure maximum durability and service life of the engine.

Low exhaust emission

The state of the art, high-tech injection and charging system with low internal losses contributes to excellent combustion and low fuel consumption.

The TAD1641GE complies with EU Stage 2 exhaust emission regulations.

Easy service & maintenance

Easily accessible service and maintenance points contribute to the ease of service of the engine.

Technical description

Engine and block

- Optimized cast iron cylinder block with optimum distribution of forces without the block being unnecessary heavy.
- Wet, replaceable cylinder liners
- Piston cooling for low thermal load on pistons and reduced ring temperature
- Tapered connecting rods to reduce risk of piston cracking
- Crankshaft induction hardened bearing surfaces and fillets with seven main bearings for moderate load on main and big-end bearings
- Nitrocarburized transmission gears for heavy duty operation
- Keystone top compression rings for long service life
- Viscous type crankshaft vibration damper
- Replaceable valve guides and valve seats
- Over head camshaft and four valves per cylinder equipped with camshaft damper to reduce noise and vibrations.

Lubrication system

- Full flow oil cooler
- Full flow disposable spin-on oil filters, for extra high filtration
- The lubricating oil level can be measured during operation (Standard dipstick only)
- Gear type lubricating oil pump, gear driven by the transmission

Features

- Fully electronic with Volvo Penta EMS 2
- Dual frequency switch (between 1500 rpm and 1800 rpm)
- High power density
- Emission compliant
- Low noise levels
- Gen Pac configuration

Fuel system

- Self de-aerating system. When replacing filters all fuel stays in the engine.
- Non-return fuel valve
- Electronic unit injectors
- Fuel prefilter with water separator and waterin-fuel indicator / alarm
- Gear driven low-pressure fuel pump
- Fine fuel filter with manual feed pump and fuel pressure switch
- Fuel shut-off valve, electrically operated

Cooling system

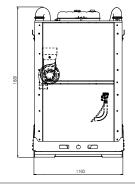
- Efficient cooling with accurate coolant control through a water distribution duct in the cylinder block. Reliable sleeve thermostat with minimum pressure drop
- Belt driven, maintenance-free coolant pump with high degree of efficiency

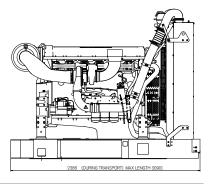
Turbo charger

- Efficient and reliable turbo charger
- Extra oil filter for the turbo charger

Electrical system

- Engine Management System 2 (EMS 2), an electronically controlled processing system which optimizes engine performance. It also includes advanced facilities for diagnostics and fault tracing
- The instruments and controls connect to the engine via the CAN SAE J1939 interface, either through the Control Interface Unit (CIU) or the Digital Control Unit (DCU). The CIU converts the digital CAN bus signal to an anolog signal, making it possible to connect a variety of instruments. The DCU is a control panel with display, engine control, monitoring, alarm, parameter setting and diagnostic functions. The DCU also presents error codes in clear text.
- Sensors for oil pressure, oil temp, boost pressure, boost temp, coolant temp, fuel temp, water in fuel, fuel pressure and two speed sensors. Crank case pressure, piston cooling pressure, oil level and air filter pressure drop sensors.
- Alternator 24V / 80A




Technical Data General Engine designation No. of cylinders and configuration Method of operation Bore, mm (in.) Stroke, mm (in.) Displacement, I (in³) Compression ratio Dry weight, kg (lb) Dry weight with Gen Pac, kg (lb) Wet weight, kg (lb) Wet weight with Gen Pac, kg (lb)		in-line 6 4-stroke 144 (5.67) 165 (6.50) 16.12 (983.7) 16.5:1 1480 (3263) 1910 (4211) 1550 (3417) 2020 (4453)
Performance with fan, kW (hp) at:	1500 rpm	1800 rpm
Prime Power Max Standby Power	430 (585) 473 (643)	1 1
Lubrication system Oil consumption, liter/h (US gal/h) a	1500 rpm	1800 rpm
Prime Power	0.10 (0.026) 0.10 (0.026)	0.12 (0.032)
Fuel system Specific fuel consumption at:	1500 rpm	1800 rpm
Prime Power, g/kWh (lb/hph) 25 % 50 % 75 % 100 % Max Standby Power, g/kWh (lb/hph	216 (0.350) 199 (0.322) 196 (0.318) 199 (0.322)	
25 % 50 % 75 % 100 %	217 (0.351) 197 (0.320) 196 (0.318) 200 (0.324)	
Intake and exhaust system Air consumption, m³/min (cfm) at:	1500 rpm	1800 rpm
Prime Power Max Standby Power Max allowable air intake restriction,	35.5 (1254) 38.0 (1342)	
kPa (In wc) Heat rejection to exhaust, kW (BTU	5 (20.1)	5 (20.1)
Prime Power Max Standby Power Exhaust gas temperature after turbir °C (°F) at:	326 (18539) 356 (20245)	
Prime Power Max Standby Power Max allowable back-pressure in exh	443 (829) 455 (851)	436 (817) 479 (893)
kPa (In wc) Exhaust gas flow, m³/min (cfm) at:	10 (40 0)	10 (40.2)
Prime power Max Standby Power	85.0 (3002) 92.0 (3249)	100.6 (3553) 110.4 (3899)
Cooling system Heat rejection radiation from engine kW (BTU/min) at:	1500 rpm	1800 rpm
Prime Power Max Standby Power Heat rejection to coolant kW (BTU/	18 (1024) 20 (1137) min) at:	22 (1251) 24 (1365)
Prime Power Max Standby Power Fan power consumption, kW (hp)	170 (9668) 184 (10464) 11 (15)	212 (12056) 231 (13137) 19 (26)

Standard equipment	Engine	Gen Pac
Engine		
Automatic belt tensioner	•	•
Lift eyelets	•	•
Flywheel		
Flywheel housing with conn. acc. to SAE 1	•	•
Flywheel for 14" flex. plate and flexible coupling	•	•
Vibration dampers	•	•
Engine suspension		
Fixed front suspension	•	•
Lubrication system		
Oil dipstick	•	•
Full-flow oil filter of spin-on type	•	•
By-pass oil filter of spin-on type	•	•
Oil cooler, side mounted	•	•
Low noise oil sump	•	•
Fuel system		
Fuel filters of disposable type	•	•
Electronic unit injectors	•	•
Pre-filter with water separator	•	•
Intake and exhaust system		
Air filter with replaceable paper insert	•	•
Air restriction indicator	•	•
Air cooled exhaust manifold	•	•
Connecting flange for exhaust pipe	•	•
Exhaust flange with v-clamp	•	•
Turbo charger, low right side	•	•
Cooling system	4.	
Radiator incl intercooler	•1)	•
Belt driven coolant pump	•	•
Fan hub	•	•
Thrust fan	•1)	•
Fan guard	_	•
Belt guard	_	•
Control system		
Engine Management System (EMS) with		
CAN-bus interface SAE J1939	•	•
CIU, Control Interface Unit	-	-
Alternator		
Alternator 80A / 24V	•	•
Starting system		
Starter motor, 7.0kW, 24V	•	•
Connection facility for extra starter motor	•	•
Instruments and senders		
Temp and oil pressure for automatic	•	•
stop/alarm 103°C		
Other equipment		
Expandable base frame	_	•
Engine Packing		
Plastic wrapping	•	•
1)		
1) must be ordered, se order specification		

Dimensions TAD1641GE

Not for installation

Note! Not all models, standard equipment and accessories are available in all countries. All specifications are subject to change without notice.

The engine illustrated may not be entirely identical to production standard engines.

Power Standards

The engine performance corresponds to ISO 3046, BS 5514 and DIN 6271. The technical data applies to an engine without cooling fan and operating on a fuel with calorific value of 42.7 MJ /kg (18360 BTU/lb) and a density of 0.84 kg/liter (7.01 lb/US gal), also where this involves a deviation from the standards. Power output guaranteed within 0 to $\pm 2\%$ att rated ambient conditions at delivery. Ratings are based on ISO 8528. Engine speed governing in accordance with ISO 3046/IV, class A1 and ISO 8528-5 class G3

Exhaust emissions

The engine complies with EU stage 2 emission legislation according to the Non Road Directive EU 97/68/EEC. The engine also complies with TA-luft -50% exhaust emission regulations.

Rating Guidelines

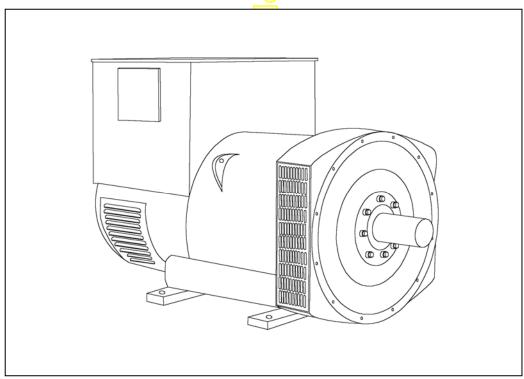
PRIME POWER rating corresponds to ISO Standard Power for continuous operation. It is applicable for supplying electrical power at variable load for an unlimited number of hours instead of comat variable load for an unimited number of nous instead of com-mercially purchased power. A10 % overload capability for govering purpose is available for this rating. MAXIMUM STANDBY POWER rating corresponds to ISO Stan-dard Fuel Stop Power. It is applicable for supplying standby electri-

cal power at variable load in areas with well established electrical networks in the event of normal utility power failure. No overload capability is available for this rating. 1 hp = 1 kW x 1.36

Information

For more technical data and information, please look in the Generating Set Engines Sales Guide.

AB Volvo Penta SE-405 08 Göteborg, Sweden www.volvopenta.com


⁻ optional equipment or not applicable

[•] included in standard specification

STAMFORD

HCI 534E/544E - Winding 311

Technical Data Sheet

STAMFORD

HCI534E/544E SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100. AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained overexcitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

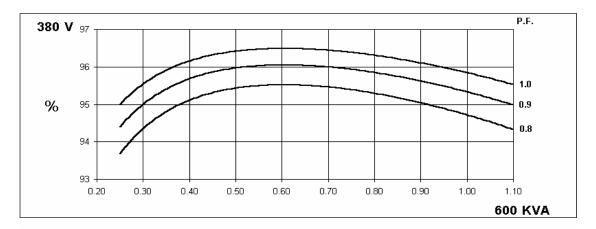
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

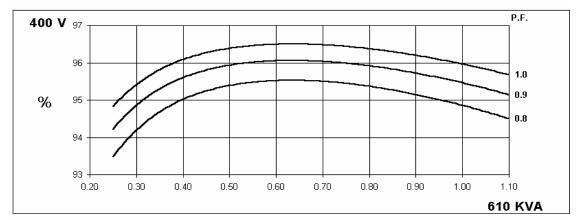
Front cover drawing typical of product range.

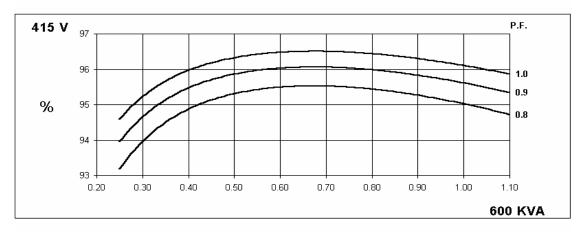
HCI534E/544E

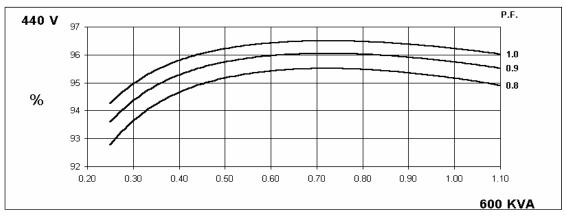
WINDING 311

WINDING 311									
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.						
A.V.R.	MX321	MX341							
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING				
SUSTAINED SHORT CIRCUIT		SHORT CIRC							
CONTROL OVOTEN	I				., 0 /				
CONTROL SYSTEM	SELF EXCI	IED							
A.V.R.	AS440								
VOLTAGE REGULATION	± 1.0 %	± 1.0 % With 4% ENGINE GOVERNING							
SUSTAINED SHORT CIRCUIT	SERIES 4 C	CONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT	•		
INSULATION SYSTEM				CLAS	SS H				
PROTECTION				IP2	23				
RATED POWER FACTOR				0.	8				
STATOR WINDING				DOUBLE L					
WINDING PITCH				TWO T					
WINDING LEADS	ļ			1:					
STATOR WDG. RESISTANCE		0.0043 (Ohms PER PI	HASE AT 22°	°C SERIES	STAR CONN	ECTED		
ROTOR WDG. RESISTANCE				1.96 Ohm:	s at 22°C				
EXCITER STATOR RESISTANCE				17 Ohms	at 22°C				
EXCITER ROTOR RESISTANCE		0.092 Ohms PER PHASE AT 22°C							
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others								
WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%								
MAXIMUM OVERSPEED	2250 Rev/Min								
BEARING DRIVE END	BALL. 6220 (ISO)								
BEARING NON-DRIVE END	BALL. 6314 (ISO)								
	1 BEARING 2 BEARING								
WEIGHT COMP. GENERATOR	1543 kg 1535 kg								
WEIGHT WOUND STATOR		722	2 k g			722	kg		
WEIGHT WOUND ROTOR		617	7 kg			588	kg		
WR² INERTIA		8.982	8 <mark>kgm²</mark>			8.7049	kgm ²		
SHIPPING WEIGHTS in a crate		163	5 <mark>kg</mark>			1625 kg			
PACKING CRATE SIZE			x 124(cm)		166 x 87 x 124(cm)				
			Hz			60			
TELEPHONE INTERFERENCE	ļ		< <mark>2%</mark>			TIF			
COOLING AIR	000/000	1	ec 2202 cfm	140/054	440/040	1.312 m³/sec		400/077	
VOLTAGE BARALLEL STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277	
VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA	190/110 220/110	200/115	20 <mark>8</mark> /120 240/120	220/127 254/127	208/120 240/120	220/127 254/127	230/133 266/133	240/138 277/138	
kVA BASE RATING FOR REACTANCE									
VALUES	600	610	600	600	681	713	731	750	
Xd DIR. AXIS SYNCHRONOUS	3.14	2.88	2.63	2.34	3.53	3.30	3.10	2.92	
X'd DIR. AXIS TRANSIENT	0.17	0.15	0.14	0.12	0.17	0.16	0.15	0.14	
X''d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.12	0.11	0.11	0.10	
Xq QUAD. AXIS REACTANCE	2.45	2.25	2.05	1.82	2.82	2.64	2.48	2.33	
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.24	0.22	0.20	0.34	0.32	0.30	0.28	
XL LEAKAGE REACTANCE	0.06	0.05	0.05	0.04	0.06	0.06	0.05	0.05	
X2 NEGATIVE SEQUENCE	0.18 0.16 0.15 0.13 0.23 0.22 0.20 0.19								
X ₀ ZERO SEQUENCE	0.08	0.08	0.07	0.06	0.10	0.09	0.09	0.08	
REACTANCES ARE SATURAT	ĒD T	V	ALUES ARE			ND VOLTAG	E INDICATEI	D	
T'd TRANSIENT TIME CONST. T"d SUB-TRANSTIME CONST.	 			0.0					
T'do O.C. FIELD TIME CONST.	2.5s								
Ta ARMATURE TIME CONST.				0.0					
SHORT CIRCUIT RATIO 1/Xd									
The state of the s									

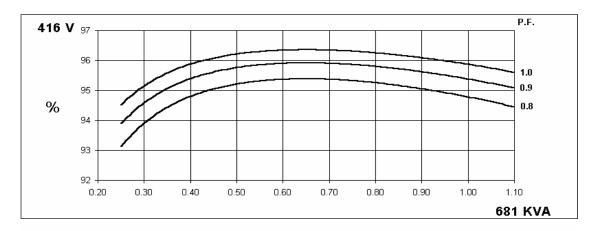

50 Hz

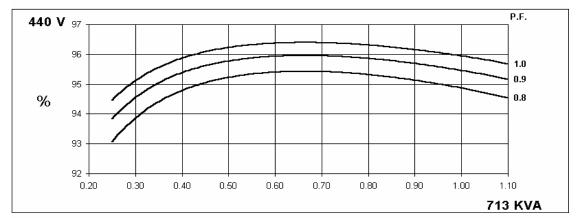

HCI534E/544E

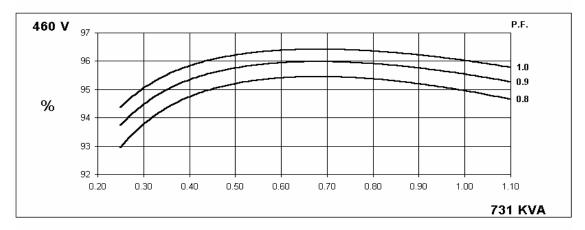

STAMFORD

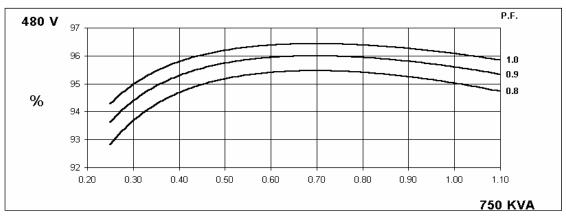

Winding 311

THREE PHASE EFFICIENCY CURVES

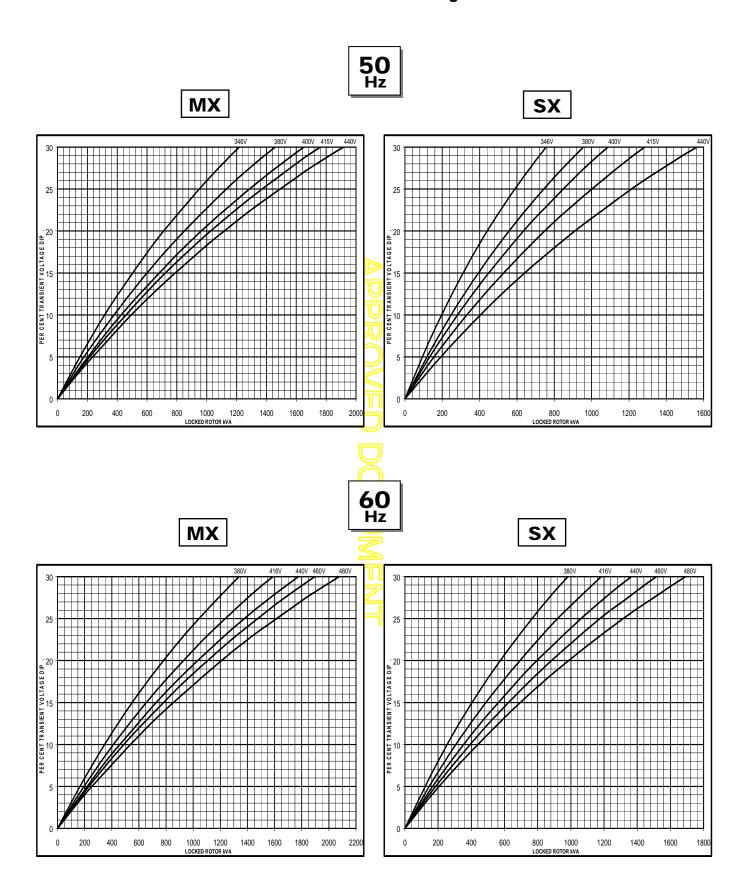

60 Hz


HCI534E/544E


STAMFORD

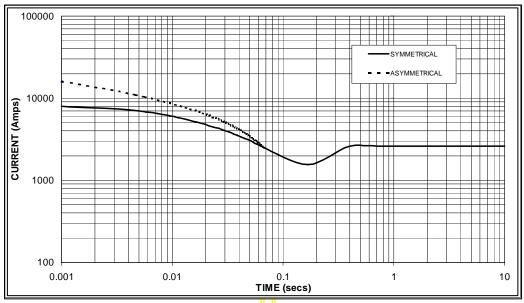

Winding 311

THREE PHASE EFFICIENCY CURVES

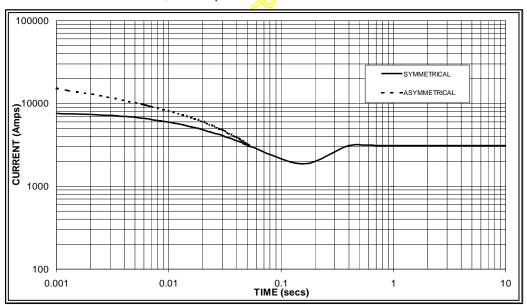


HCI534E/544E

Winding 311


Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.


50 Hz

Sustained Short Circuit = 2,600 Amps

60 Hz

Sustained Short Circuit = 3,100 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.06	440v	X 1.06
415v	X 1.09	460v	X 1.12
440v	X 1.12	480v	X 1.20

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

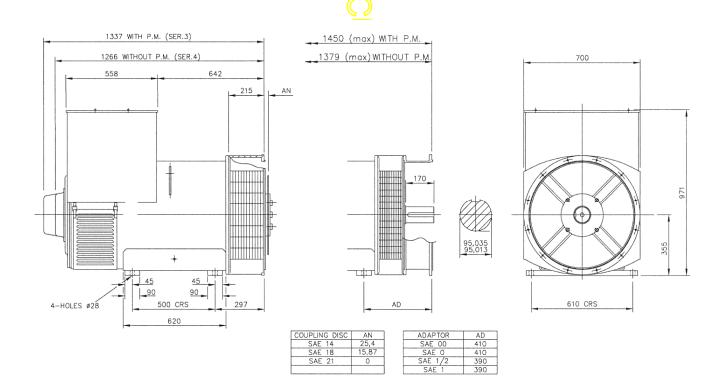
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732


HCI534E/544E

Winding 311 0.8 Power Factor

RATINGS

	C	Class - Temp Rise	C	ont. F -	105/40	°C	C	ont. H -	125/40	Ç	St	andby -	150/40)°C	St	andby -	163/27	°C
5	50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
	•	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	łz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	••••••	kVA	550	560	550	550	600	610	600	600	636	640	636	636	660	665	660	660
		kW	440	448	440	440	480	488	480	480	509	512	509	509	528	532	528	528
		Efficiency (%)	95.0	95.1	95.2	95.3	94.7	94.9	95.0	95.2	94.5	94.7	94.8	95.0	94.3	94.5	94.7	94.9
		kW Input	463	471	462	462	507	514	505	504	538	541	537	536	560	563	558	556
6	60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	łΖ	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
'	12	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
		kVA	625	650	663	675	681	713	731	750	719	750	780	800	738	769	798	819
		kW	500	520	530	540	545	570	585	600	575	600	624	640	590	615	638	655
		Efficiency (%)	95.0	95.1	95.2	95.3	94.8	94.9	95.0	95.0	94.6	94.7	94.8	94.8	94.5	94.6	94.7	94.8
		kW Input	526	547	557	567	575	601	616	632	608	634	658	675	625	650	674	691

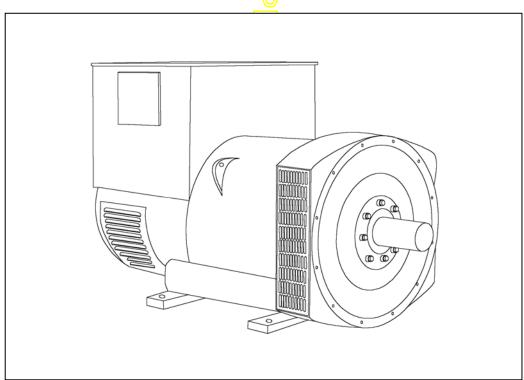
DIMENSIONS

APPROVED DOCUMENT

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom

Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD

HCI 534D/544D - Winding 311

Technical Data Sheet

STAMFORD

HCI534D/544D SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100. AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained overexcitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5°C by which the operational ambient temperature exceeds 40°C.

Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

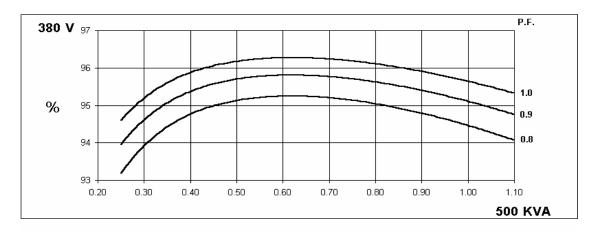
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

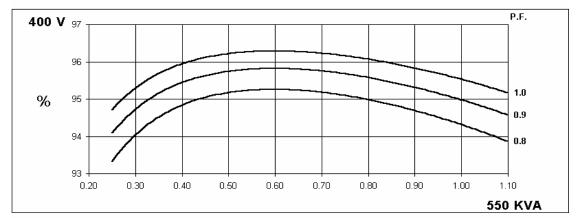
Front cover drawing typical of product range.

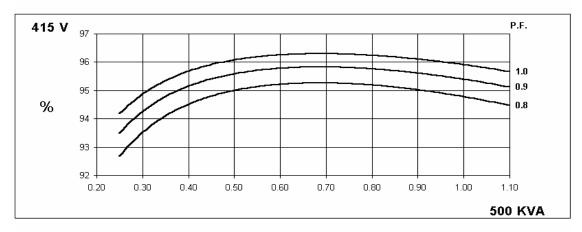
HCI534D/544D

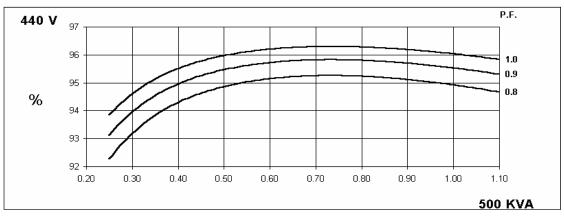
WINDING 311

WINDING STI								
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.					
A.V.R.	MX321	MX341						
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING			
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIRC						
CONTROL SYSTEM	SELF EXCI				,, ,			
A.V.R.	AS440							
		\A(') - 40/ FAI	OINE OOVE	DNIINO				
VOLTAGE REGULATION	± 1.0 %		GINE GOVE					
SUSTAINED SHORT CIRCUIT	SERIES 4 C	CONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT		
INSULATION SYSTEM				CLAS	SS H			
PROTECTION				IP2	23			
RATED POWER FACTOR				0.	8			
STATOR WINDING				DOUBLE L	AYER LAP			
WINDING PITCH				TWO T	HIRDS			
WINDING LEADS				1:				
		0.0040.6	DED DE			STAD CONN	FOTED	
STATOR WDG. RESISTANCE		0.0049 (Ohms PER PI			STAR CONN	ECIED	
ROTOR WDG. RESISTANCE	1.77 Ohms at 22°C							
EXCITER STATOR RESISTANCE		17 Ohms at 22°C						
EXCITER ROTOR RESISTANCE		0.092 Ohms PER PHASE AT 22°C						
R.F.I. SUPPRESSION	BS EN 61000-6-2 & BS EN 61000-6-4, VDE 0875G, VDE 0875N. refer to factory for others							
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-	DISTORTING	BALANCE	LINEAR LC	AD < 5.0%	
MAXIMUM OVERSPEED		2250 Rev/Min						
BEARING DRIVE END		BALL. 6220 (ISO)						
BEARING NON-DRIVE END		BALL. 6314 (ISO)						
BEARING NON BRIVE END	1 BEARING 2 BEARING							
WEIGHT COMP. GENERATOR	1393 kg 1395 kg							
WEIGHT WOUND STATOR	657 kg 657 kg							
WEIGHT WOUND ROTOR			3 kg			535		
WR ² INERTIA		8.006	8 kgm²			7.7289	kgm ²	
SHIPPING WEIGHTS in a crate			5 <mark>kg</mark>			1485	i kg	
PACKING CRATE SIZE		166 x 87	x 124(cm)			166 x 87 x	124(cm)	
		50	Hz			60	Hz	
TELEPHONE INTERFERENCE		THE	⁻ < <mark>2%</mark>			TIF	<50	
COOLING AIR		1.035 m³/se	ec 2202 cfm			1.312 m³/sec	2780 cfm	
VOLTAGE SERIES STAR	380/220	400/231	415/240	440/254	416/240	440/254	460/266	480/277
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138
VOLTAGE SERIES DELTA kVA BASE RATING FOR REACTANCE	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138
VALUES	500	550	500	500	575	594	625	644
Xd DIR. AXIS SYNCHRONOUS	3.02	2.99	2.53	2.25	3.52	3.25	3.13	2.96
X'd DIR. AXIS TRANSIENT	0.16	0.15	0.13	0.12	0.17	0.16	0.15	0.14
X"d DIR. AXIS SUBTRANSIENT	0.11	0.11	0.09	0.08	0.12	0.11	0.11	0.10
Xq QUAD. AXIS REACTANCE	2.48	2.46	2.08	1.85	2.87	2.65	2.55	2.41
X"q QUAD. AXIS SUBTRANSIENT	0.27	0.28	0.23	0.20	0.31	0.29	0.28	0.26
XL LEAKAGE REACTANCE	0.05	0.04	0.04	0.04	0.06	0.06	0.05	0.05
X2 NEGATIVE SEQUENCE	EQUENCE 0.19 0.19 0.16 0.14 0.22 0.20 0.2					0.20	0.19	
X ₀ ZERO SEQUENCE	0.10	0.10	0.08	0.07	0.10	0.09	0.09	0.08
REACTANCES ARE SATURAT	ΓED	V	ALUES ARE			ND VOLTAG	EINDICATE	D
T'd TRANSIENT TIME CONST.				0.0				
T''d SUB-TRANSTIME CONST.				0.0				
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.				2.2				
Fa ARMATURE TIME CONST. 0.018s SHORT CIRCUIT RATIO 1/Xd								
SHORT CIRCUIT RATIO								

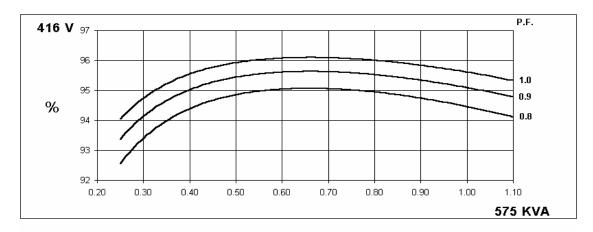

50 Hz

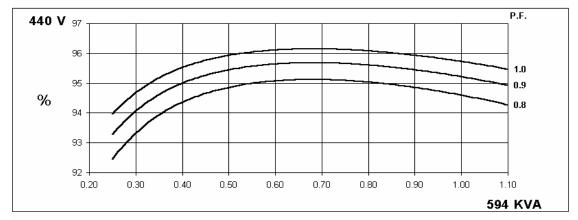

HCI534D/544D

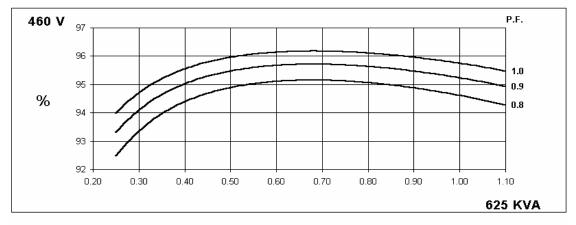

STAMFORD

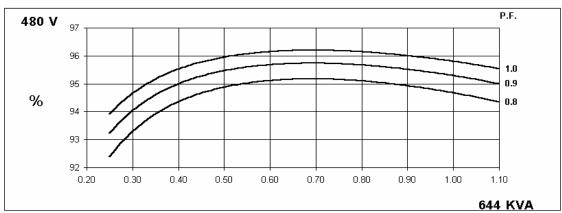

Winding 311

THREE PHASE EFFICIENCY CURVES

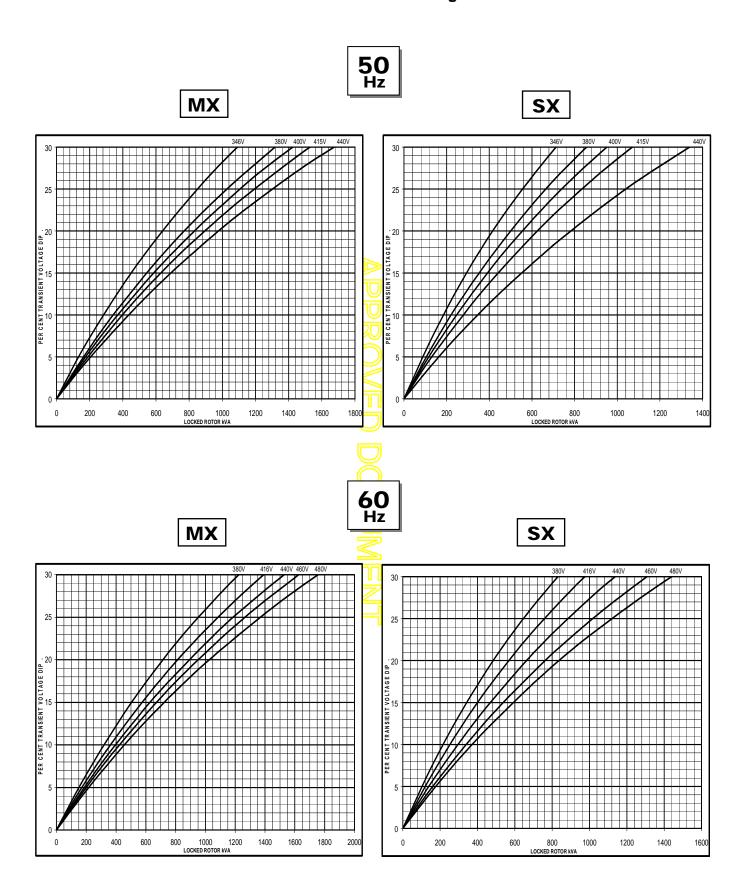

60 Hz


HCI534D/544D


STAMFORD

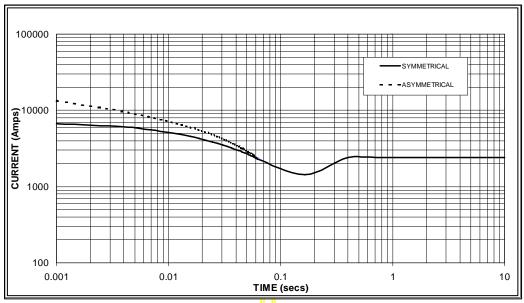

Winding 311

THREE PHASE EFFICIENCY CURVES

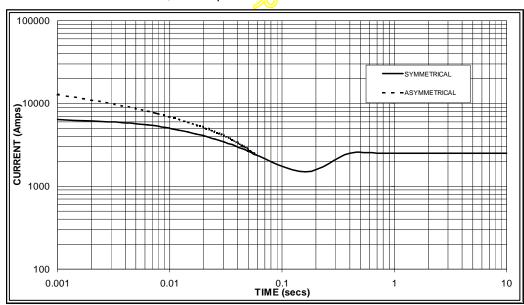


HCI534D/544D

Winding 311


Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.


50 Hz

Sustained Short Circuit = 2,400 Amps

60 Hz

Sustained Short Circuit = 2,500 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50	Hz	60	Hz
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.06	440v	X 1.06
415v	X 1.09	460v	X 1.12
440v	X 1.12	480v	X 1.20

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

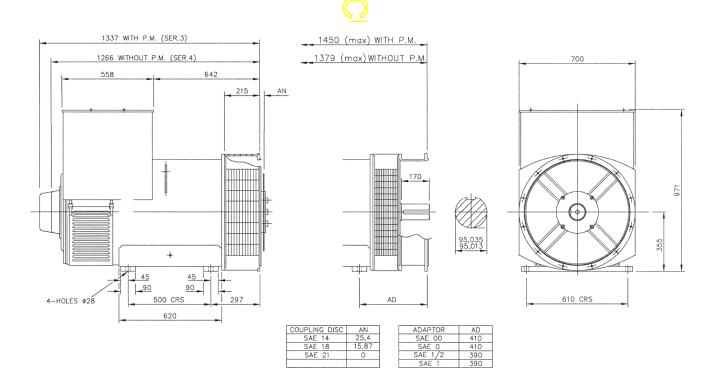
All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connections the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732


HCI534D/544D

Winding 311 0.8 Power Factor

RATINGS

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40)°C	Sta	andby -	163/27	°C
5	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
_	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
H:	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	450	495	450	450	500	550	500	500	515	575	515	515	550	590	550	530
	kW	360	396	360	360	400	440	400	400	412	460	412	412	440	472	440	424
	Efficiency (%)	94.8	94.7	95.0	95.1	94.5	94.3	94.8	94.9	94.4	94.1	94.7	94.9	94.1	94.0	94.5	94.8
	kW Input	380	418	379	379	423	467	422	421	436	489	435	434	468	502	466	447
6	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
H	Parallal Star (\/)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
' '	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	519	538	563	588	575	594	625	644	588	625	655	675	606	644	673	694
	kW	415	430	450	470	460	475	500	515	470	500	524	540	485	515	538	555
	Efficiency (%)	94.7	94.8	94.9	94.9	94.5	94.6	94.6	94.7	94.4	94.4	94.5	94.5	94.3	94.3	94.4	94.4
	kW Input	438	454	475	496	487	502) 529	544	498	530	554	571	514	546	570	588

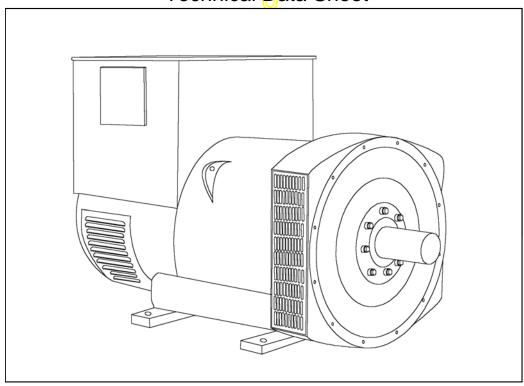
DIMENSIONS

APPROVED DOCUMENT

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom

Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD

HCI534D/544D - Winding 17

Technical Data Sheet

HCI534D/544D

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359. Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against

surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

the MX321 AVR must be used.

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rmssensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half kev.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 6 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5 C by which the operational ambient temperature exceeds 40 C.

Note: Requirement for operating in an ambient exceeding 60 C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

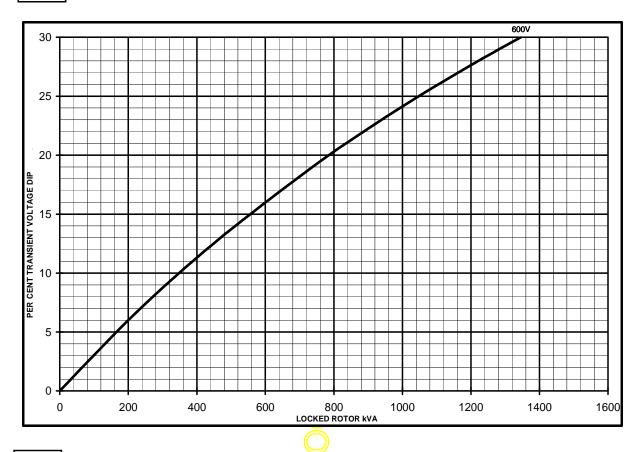
Front cover drawing typical of product range.

STAMFORD

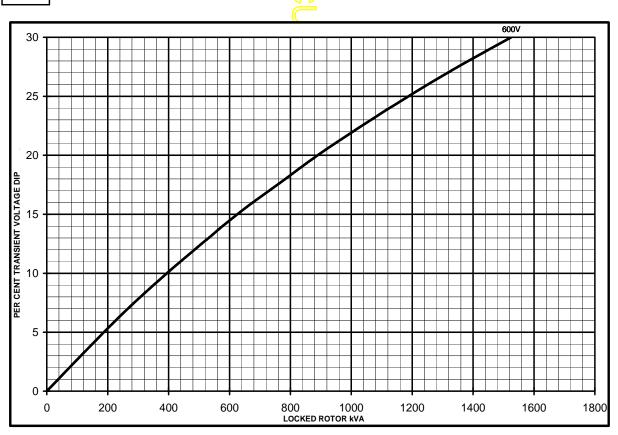
HCI534D/544D

WINDING 17

A.V.R. MX321	CONTROL SYSTEM	SEPARATELY EXCITED BY P.M.G.					
\$\text{VITAGE REGULATION}	A.V.R.	MX321 MX341					
SUSTAINED SHORT CIRCUIT REFER TO SHORT CIRCUIT DECREMENT CURVES (page 5)	VOLTAGE REGULATION		GOVERNING				
SELF EXCITED							
A.V.R.	GOOTAINED GHORT GIRCOTT	NET EN TO GROW OINCOM BEGINEMENT	OOKVEO (page 0)				
VOLTAGE REGULATION	CONTROL SYSTEM	SELF EXCITED					
SUSTAINED SHORT CIRCUIT WILL NOT SUSTAIN A SHORT CIRCUIT	A.V.R.	AS440					
NSULATION SYSTEM	VOLTAGE REGULATION	± 1.0 % With 4% ENGINE GOVERNING	G				
PROTECTION IP23 RATED POWER FACTOR 0.8 STATOR WINDING DOUBLE LAYER LAP WINDING PITCH TWO THIRDS WINDING LEADS 12 STATOR WDG, RESISTANCE 0.0079 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED ROTOR WDG, RESISTANCE 1.77 Ohms at 22°C EXCITER STATOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANC 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANC 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANC 0.092 OHMS PER PHASE AT 22°C EXCITER STAR 0.004 OHMS PER PHASE AT 22°C EXCITER STAR 0.005 OHMS PER PHASE AT 22°C EXCITER STAR 0.006 OHMS PER PHASE AT 22°C EXCITER STAR PER P	SUSTAINED SHORT CIRCUIT	WILL NOT SUSTAIN A SHORT CIRCUIT					
RATED POWER FACTOR 0.8	INSULATION SYSTEM	1	CLASS H				
STATOR WINDING	PROTECTION		IP23				
STATOR WINDING	RATED POWER FACTOR						
WINDING LEADS 12 STATOR WDG, RESISTANCE 0.0079 Ohms PER PHASE AT 22°C SERIES STAR CONNECTED ROTOR WDG, RESISTANCE 1.77 Ohms at 22°C EXCITER STATOR RESISTANCE 1.77 Ohms at 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C WAVEFORM DISTORTION NO LOAD < 1.8% NON-DISTORTING BALANCED LINEAR LOAD < 5.0%		DO	UBI F LAYER LAP				
VINDING LEADS							
STATOR WDG. RESISTANCE							
1.77 Ohms at 22°C		0.0070 Ohma DED DUA O					
EXCITER STATOR RESISTANCE EXCITER ROTOR RESISTANCE EXCITER ROTOR RESISTANCE R.F.I. SUPPRESSION BS EN 61000-6-2 & \$6.5 EN 61000-6-4, VDE 08750, refer to factory for others WAVEFORM DISTORTION NO LOAD < 1.5		 					
EXCITER ROTOR RESISTANCE 0.092 Ohms PER PHASE AT 22°C R.F.I. SUPPRESSION BS EN 61000-6-2 & BS_EN 61000-6-4, VDE 08750, VDE 0875N. refer to factory for others WAVEFORM DISTORTION NO LOAD < ↑ 5% NON-DISTORTINO BALLANCED LINEAR LOAD < 5.0% MAXIMUM OVERSPEED 2250 Rev/Min BEARING DRIVE END BALL. 6220 (ISO) BEARING NON-DRIVE END BALL 6220 (ISO) BEARING NON-DRIVE END BALL 6220 (ISO) BEARING 1393 kg WEIGHT WOUND STATOR 657 kg WEIGHT WOUND STATOR 657 kg WEIGHT WOUND ROTOR 563 kg RYR INERTIA 8.0068 kgm² 7.7289 kgm² SHIPPING WEIGHTS in a crate 1485 kg PACKING CRATE SIZE 166 x 87 x 124 (cm) TELEPHONE INTERFERENCE THF-2% TIF-50 COOLING AIR VOLTAGE SERIES DELTA WA BASE RRINING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS 2.96 Xd DIR. AXIS SUBTRANSIENT AC DIR. AXIS SUBTRANSIENT 0.10 X' q QUAD. AXIS REACTANCE X 2 NEGATIVE SQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd SUB-TRANSIENT TIF GONST. 0.018 s		- 70					
R.F.I. SUPPRESSION BS EN 61000-6-2 & SEEN 61000-6-4, VDE 0875N, refer to factory for others WAVEFORM DISTORTION NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0% MAXIMUM OVERSPEED BEARING DRIVE END BEARING NON-DRIVE END BEARING NON-DRIVE END BEARING OND-BERRATOR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
WAVEFORM DISTORTION NO LOAD < 1.5% NON-DISTORTING BALANCED LINEAR LOAD < 5.0% MAXIMUM OVERSPEED 2250 Rev/Min BEARING DRIVE END BALL. 6220 (ISO) BEARING NON-DRIVE END BALL. 6314 (ISO) WEIGHT COMP. GENERATOR 1 393 kg 1 395 kg WEIGHT WOUND STATOR 657 kg 657 kg WEIGHT WOUND ROTOR 563 kg 535 kg WEIGHTS IN a crate 1 485 kg 1 485 kg SHIPPING WEIGHTS In a crate 1 485 kg 1 485 kg PACKING CRATE SIZE 166 x 87 x 24 (cm) 166 x 87 x 124 (cm) TELEPHONE INTERFERENCE TIF< 700 COOLING AIR 1.312 m³/sec 2780 cfm VOLTAGE SERIES STAR 600V VOLTAGE PARALLEL STAR 300V VOLTAGE SERIES DELTA 346V KVA BASE RATING FOR REACTANCE 644 VALUES 40 IRA Xd DIR. AXIS SYNCHRONOUS 2.96 Xd DIR. AXIS SUBTRANSIENT 0.10 Xq QUAD. AXIS REACTANCE 2.41 X¹ QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05	EXCITER ROTOR RESISTANCE	0.092 Ohr	ms PER PHASE AT 22°C				
MAXIMUM OVERSPEED 2250 Rev/Min BEARING DRIVE END BALL. 6220 (ISO) BEARING NON-DRIVE END BALL. 6314 (ISO) **BEARING NON-DRIVE END BALL. 6314 (ISO) **BEARIN	R.F.I. SUPPRESSION						
BEARING DRIVE END BEARING NON-DRIVE END BEARING BEARD BEARING	WAVEFORM DISTORTION	NO LOAD < 1.5% NON-DIST	FORTING BALANCED LINEAR LOAD < 5.0%				
BEARING NON-DRIVE END 1 BEARING 1 BEARING 2 BEARING WEIGHT COMP. GENERATOR 1393 № WEIGHT WOUND STATOR 657 № WEIGHT WOUND ROTOR 563 № WRIGHT WOUND ROTOR 563 № ROTOR WEIGHT WOUND ROTOR 563 № ROTOR WEIGHTS in a crate 1485 № 1485 № 1485 № 1485 № 1485 № 1485 № 166 x 87 x 124 (cm) 160 x 87 x	MAXIMUM OVERSPEED		2250 Rev/Min				
1 BEARING 2 BEARING 1393 kg 1395 kg	BEARING DRIVE END	BALL. 6220 (ISO)					
WEIGHT COMP. GENERATOR 1393 kg 1395 kg WEIGHT WOUND STATOR 657 kg 657 kg WEIGHT WOUND ROTOR 563 kg 535 kg WR2 INERTIA 8.0068 kgm² 7.7289 kgm² SHIPPING WEIGHTS in a crate 1485 kg 1485 kg PACKING CRATE SIZE 166 x 87 x 124 (cm) 166 x 87 x 124 (cm) TELEPHONE INTERFERENCE THF TIF<50	BEARING NON-DRIVE END	BALL. 6314 (ISO)					
WEIGHT WOUND STATOR 657 kg WEIGHT WOUND ROTOR 563 kg WR2 INERTIA 8.0068 kgm² 7.7289 kgm² SHIPPING WEIGHTS in a crate 1485 kg PACKING CRATE SIZE 166 x 87 x 124 (cm) TELEPHONE INTERFERENCE THF 29 VOLTAGE SERIES STAR 0600V VOLTAGE PARALLEL STAR VOLTAGE PARALLEL STAR VOLTAGE PARALTEL STAR VOLTAGE SAERIES DELTA xvd BASE RATING FOR REACTANCE VALUES xd DIR. AXIS SYNCHRONOUS xd DIR. AXIS SYNCHRONOUS xd QUAD. AXIS STRANSIENT 0.10 xq QUAD. AXIS SUBTRANSIENT x"q QUAD. AXIS SUBTRANSIENT x Q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE x PEGATIVE SEQUENCE 0.05 x PEGATIVE SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED Td TRANSIENT TIME CONST. 10 0.012 s Td O.0.7 IELD TIME CONST. 10 0.018 s		1 BEA <mark>RING</mark> 2 BEARING					
WEIGHT WOUND ROTOR 563 (g 535 kg WR2 INERTIA 8.0068 kgm² 7.7289 kgm² SHIPPING WEIGHTS in a crate 1485 kg 1485 kg PACKING CRATE SIZE 166 x 87 x 124 (cm) 166 x 87 x 124 (cm) TELEPHONE INTERFERENCE THF TIF<50	WEIGHT COMP. GENERATOR	(/~ \\					
WR² INERTIA 8.0068 kgm² 7.7289 kgm² SHIPPING WEIGHTS in a crate 1485 kg 1485 kg PACKING CRATE SIZE 166 x 87 x 124 (cm) 166 x 87 x 124 (cm) TELEPHONE INTERFERENCE THF <2%							
SHIPPING WEIGHTS in a crate							
PACKING CRATE SIZE 166 x 87 x 124 (cm) TELEPHONE INTERFERENCE THF-276 COOLING AIR VOLTAGE SERIES STAR VOLTAGE PARALLEL STAR VOLTAGE PARALLEL STAR VOLTAGE SERIES DELTA KVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS Z 96 X'd DIR. AXIS SUBTRANSIENT X"d DIR. AXIS SUBTRANSIENT X"q QUAD. AXIS REACTANCE X"q QUAD. AXIS SUBTRANSIENT X"q QUAD. AXIS SUBTRANSIENT X"Q QUAD. AXIS SUBTRANSIENT XLEAKAGE REACTANCE XLEAKAGE REACTANCE X2 NEGATIVE SEQUENCE D.09 REACTANCES TO THE ATM OF THE ACT ON THE ACT							
TELEPHONE INTERFERENCE THF 27% COOLING AIR 1.312 m³/sec 2780 cfm			ŭ				
1.312 m³/sec 2780 cfm		11 12 11					
VOLTAGE PARALLEL STAR 300V VOLTAGE SERIES DELTA 346V kVA BASE RATING FOR REACTANCE 644 VALUES 2.96 X'd DIR. AXIS SYNCHRONOUS 2.96 X'd DIR. AXIS TRANSIENT 0.14 X"d DIR. AXIS SUBTRANSIENT 0.10 Xq QUAD. AXIS REACTANCE 2.41 X"q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05 X2 NEGATIVE SEQUENCE 0.19 X0 ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. 0.08 s T"d SUB-TRANSTIME CONST. 0.012 s T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s			12 m³/sec 2780 cfm				
VOLTAGE SERIES DELTA 346V kVA BASE RATING FOR REACTANCE 644 VALUES 644 Xd DIR. AXIS SYNCHRONOUS 2.96 X'd DIR. AXIS TRANSIENT 0.14 X"d DIR. AXIS SUBTRANSIENT 0.10 Xq QUAD. AXIS REACTANCE 2.41 X"q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05 X2 NEGATIVE SEQUENCE 0.19 X0 ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. 0.08 s T'd SUB-TRANSTIME CONST. 0.012 s T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s	VOLTAGE SERIES STAR		600V				
kVA BASE RATING FOR REACTANCE VALUES Xd DIR. AXIS SYNCHRONOUS X'd DIR. AXIS TRANSIENT X'd DIR. AXIS SUBTRANSIENT 0.10 Xq QUAD. AXIS REACTANCE X'q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05 X2 NEGATIVE SEQUENCE 0.19 X0ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. 0.012 s T'd O.C. FIELD TIME CONST. 1.018 s	VOLTAGE PARALLEL STAR		300V				
VALUES 644 Xd DIR. AXIS SYNCHRONOUS 2.96 X'd DIR. AXIS TRANSIENT 0.14 X"d DIR. AXIS SUBTRANSIENT 0.10 Xq QUAD. AXIS REACTANCE 2.41 X"q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05 X2 NEGATIVE SEQUENCE 0.19 X0 ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. 0.08 s T'd SUB-TRANSTIME CONST. 0.012 s T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s			346V				
Xd DIR. AXIS SYNCHRONOUS 2.96 X'd DIR. AXIS TRANSIENT 0.14 X"d DIR. AXIS SUBTRANSIENT 0.10 Xq QUAD. AXIS REACTANCE 2.41 X"q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05 X2 NEGATIVE SEQUENCE 0.19 X0 ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. 0.08 s T'd SUB-TRANSTIME CONST. 0.012 s T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s			644				
X''d DIR. AXIS SUBTRANSIENT \$\text{AXIS SUBTRANSIENT}\$ \$\text{AQUAD. AXIS REACTANCE}\$ \$\text{X''q QUAD. AXIS SUBTRANSIENT}\$ \$\text{ACIS SUBTRANSIENT}\$ \$\text{ACIS SUBTRANSIENT}\$ \$\text{ACIS SUBTRANSIENT}\$ \$\text{ACIS SUBTRANSIENT}\$ \$\text{ACIS SEQUENCE}\$ \$\text			2.96				
Xq QUAD. AXIS REACTANCE X'q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05 X2 NEGATIVE SEQUENCE 0.19 X0ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. 0.08 s T''d SUB-TRANSTIME CONST. 10 O.C. FIELD TIME CONST. 7 do O.C. FIELD TIME CONST. 10 0.018 s			0.14				
X"q QUAD. AXIS SUBTRANSIENT 0.26 XL LEAKAGE REACTANCE 0.05 X2 NEGATIVE SEQUENCE 0.19 X0 ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. 0.08 s T"d SUB-TRANSTIME CONST. 0.012 s T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s	X''d DIR. AXIS SUBTRANSIENT		0.10				
XL LEAKAGE REACTANCE X2 NEGATIVE SEQUENCE X3 ZERO SEQUENCE X6 ZERO SEQUENCE REACTANCES ARE SATURATED T'd TRANSIENT TIME CONST. T'd SUB-TRANSTIME CONST. T'd O.C. FIELD TIME CONST. T ARMATURE TIME CONST. 0.012 s Ta ARMATURE TIME CONST. 0.018 s	Xq QUAD. AXIS REACTANCE		2.41				
X2 NEGATIVE SEQUENCE 0.19 X0 ZERO SEQUENCE 0.09 REACTANCES ARE SATURATED T'd TRANSIENT TIME CONST. T'd SUB-TRANSTIME CONST. T'd O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST. 0.012 s 0.018 s	X"q QUAD. AXIS SUBTRANSIENT						
XoZERO SEQUENCE REACTANCES ARE SATURATED VALUES ARE PER UNIT AT RATING AND VOLTAGE INDICATED T'd TRANSIENT TIME CONST. T'd SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST. 0.018 s	XL LEAKAGE REACTANCE	0.05					
REACTANCES ARE SATURATED T'd TRANSIENT TIME CONST. T'd SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST. 0.012 s 2.2 s 0.018 s	X ₂ NEGATIVE SEQUENCE	0.19					
T'd TRANSIENT TIME CONST. 0.08 s T''d SUB-TRANSTIME CONST. 0.012 s T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s							
T"d SUB-TRANSTIME CONST. 0.012 s T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s							
T'do O.C. FIELD TIME CONST. 2.2 s Ta ARMATURE TIME CONST. 0.018 s							
Ta ARMATURE TIME CONST. 0.018 s							
SHORT CIRCUIT RATIO 1/Xd							
		1	1/Xd				

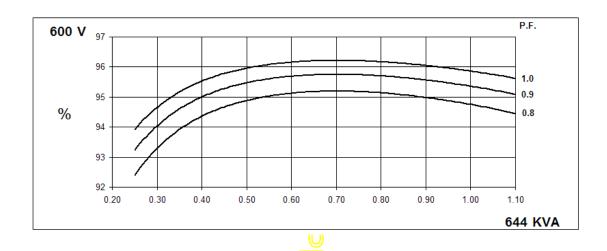


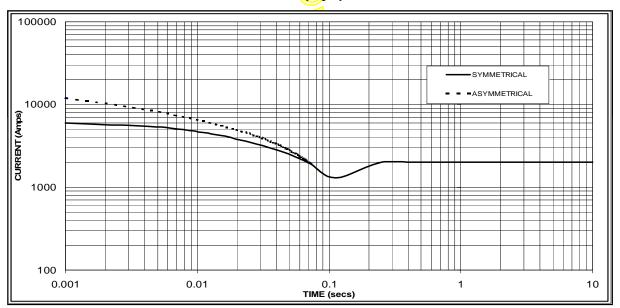
HCI534D/544D


Winding 17

SX

Locked Rotor Motor Starting Curves


MX


STAMFORD

HCI534D/544DWinding 17

THREE PHASE EFFICIENCY CURVES

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2000 Amps

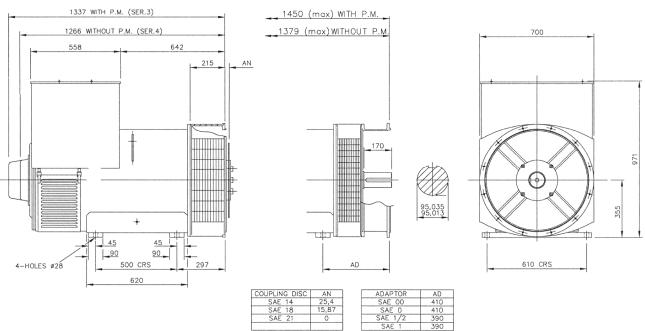
Note

The following multiplication factor should be used to convert the values from curve for the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

HCI534D/544D


Winding 17 / 0.8 Power Factor

60Hz

RATINGS

Class - Temp Rise	Cont. F - 105/40°C	Cont. H - 125/40°C	Standby - 150/40°C	Standby - 163/27°C
Series Star (V)	600	600	600	600
Parallel Star (V)	300	300	300	300
Series Delta (V)	346	346	346	346
kVA	588	644	675	694
kW	470	515	540	555
Efficiency (%)	95.0	94.8	94.6	94.5
kW Input	495	544	571	587

APPROVED DOCUMENT

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom

Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

DGC-2020 Digital Genset Controller

A highly advanced integrated genset control system, this device provides genset control, transfer switch control, metering, protection, and programmable logic in a simple, easy-to-use, reliable, rugged, and cost effective package.

FEATURES

- Generator metering (includes three-phase mains)
- Engine and generator protection: 27, 32R, 40Q, 59, 810/U
- Optional enhanced generator protection: 47, 51, 78, and 81ROCOF
- Load sharing and generator sequencing (via LSM-2020 Load Share Module)
- Var sharing over Ethernet (via LSM-2020)
- BESTCOMSPlus® Software
 - Programming and setup
 - Intuitive and powerful
 - Remote control and monitoring
 - Programmable logic
 - USB communications
- Automatic transfer switch control
- Automatic synchronizer (optional)
- Exercise timer
- SAE J1939 engine ECU communications
- Automatic generator configuration detection
- Expandable functionality via add-on modules
 - LSM-2020 Load Share Module
 - CEM-2020 Contact Expansion Module
 - AEM-2020 Analog Expansion Module
- Multilingual capability
- Remote communications to Basler's RDP-110 (remote display panel)
- Sixteen programmable contact inputs
- Up to 15 contact outputs: 3 contacts rated for 30 Adc and up to 12 programmable contacts rated for 2 Adc

VISIT <u>WWW.BASLER.COM</u> FOR ADDITIONAL INFORMATION.

BENEFITS

- Provides integrated engine-genset control, protection, and metering in a single package.
- The Offline Simulator, provided in BESTlogic™Plus, helps test and troubleshoot logic without the need for expensive hardware.
- Flexible programmable logic and programmable I/O make it easy to expand the DGC-2020's inputs and outputs with the CEM-2020 (Contact Expansion Module) and the AEM-2020 (Analog Expansion Module). This saves time and money by eliminating unnecessary external PLCs and control relaying.

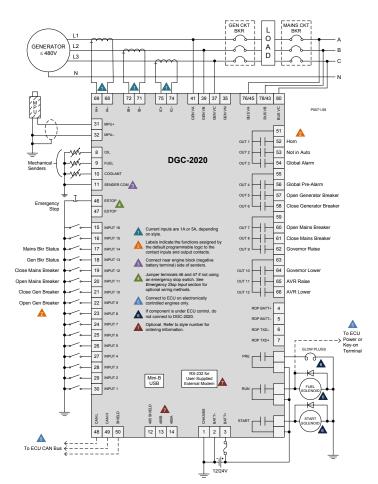


Figure 1 - DGC-2020 Connection Diagram for a Typical Application

Power Supply

Nominal: 12 or 24 Vdc Range: 6 to 32 Vdc Battery Ride Through: Starting at 10 Vdc,

withstands cranking ride-through down to

0 V for 50 ms

Power Consumption

Sleep Mode: 5 W Normal Operational Mode: 7.9 W Maximum: 14.2 W

Current Sensing

1 A Sensing: 0.02 to 1.0 Aac, continuous

2 Aac for 1 second

5 A Sensing: 0.1 to 5.0 Aac, continuous

10 Aac for 1 second

Burden: 1 VA

Voltage Sensing

Range: 12 to 576 Vrms L-L

Frequency Range: 10 to 72 Hz for 50/60 Hz style,

10 to 480 Hz for 400 Hz style

Burden: 1 VA One-second Rating: 720 Vrms

Contact Sensing

Contact Inputs (16): Accepts normally open (N.O.),

Dry Contacts, programmable

Emergency Stop: Normally closed (N.C.),

Dry Contact

SPECIFICATIONS

Engine Speed Sensing

Magnetic Pickup:
Voltage Range: 6 to 70 Vpp
Frequency Range: 32 to 10,000 Hz

Generator Frequency:

Generator Voltage Range: 12 to 576 Vrms

Via ECU over J1939

Resistive Senders

Fuel Level Sender: 0 to 250 Ω nominal Coolant Temp Sender: 10 to 2,750 Ω nominal Oil Pressure Sender: 0 to 250 Ω nominal

Output Contacts

Fuel Solenoid, Engine Crank,

Pre-Start Relays Rating: 30 Adc at 28 Vdc-

make, break, and carry

Programmable Relays: Up to 12 Rating: 2 Adc at

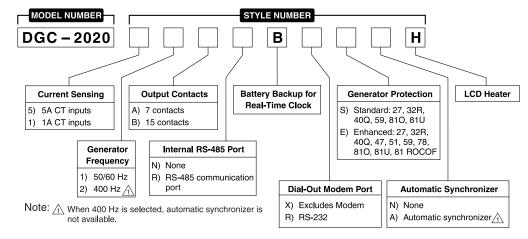
2 Adc at 28 Vdcmake, break, and carry

Protection

Engine:

Generator: 27, 32R, 40Q, 59, 810/U (standard)

47, 51, 78, 81 ROCOF (optional) Oil pressure, coolant temperature,


overcrank, ECU-specific elements,

and diagnostic reporting.

Agency Approvals

CSA certified, NFPA compliant, CE compliant, UL recognized (Hazardous Location certification available upon request), EAC certified

STYLE CHART

Communication

USB Port: USB 2.0, Mini-B jack

RS-485 (optional): 9600 baud, 8 data bits, no parity RDP-110 (optional): 4,000 ft (1,219 m) max wire

length, 20 AWG (0.52 mm²) min

wire size

Modem (optional): DB-9 connector (male)

CAN bus: 250 kb/s communication rate,

1.5 to 3 Vdc differential bus

Environmental

Operating Temp: -40°C to 70°C (-40°F to 158°F) Storage Temp: -40°C to 85°C (-40°F to 185°F)

Humidity: IEC 68-2-38

Salt Fog: ASTM B 17-73, IEC 68-2-11 Ingress Protection: IEC IP54 for front panel

Shock: 15 G in three perpendicular planes

Vibration:

5 to 29 Hz: 1.5 G peak

29 to 52 Hz: 0.036" (0.914 mm) double

amplitude

52 to 500 Hz: 5 G peak

Physical

Weight: 4.4 lb (2 kg)

Dimensions (WxHxD):

11.77 x 8.27 x 2.69 inches (299 x 210 x 69 mm)

For complete specifications, download the instruction manual at www.basler.com.

RELATED PRODUCTS

- BE1-11g Generator Protection System
 - A complete generator protection system.
- DECS-250 Digital Excitation Control System
 - Total control in a compact package provides precise voltage, var and power factor regulation, exceptional system response, and generator protection.

Accessories

- AEM-2020 Analog Expansion Module
- Easily increases the functionality by seamlessly adding analog inputs and outputs.
- CEM-2020, CEM-2020H Contact Expansion Module
 - Each module adds 10 inputs and up to 24 outputs that are easily programmed through BESTCOMSPlus® for easy integration into the system.
- LSM-2020 Load Share Module
 - The simple-to-use LSM-2020 easily adds paralleling capabilities with little effort and expense.
- RDP-110 Remote Display Panel
- Provides remote alarm and pre-alarm indication and annunciation of system status, easily meeting the annunciation requirements of NFPA-110 applications.

P.A.E. Les Pins, 67319 Wasselonne Cedex, FRANCE Tel +33 3.88.87.1010 Fax +33 3.88.87.0808 e-mail: franceinfo@basler.com

Tmax-Molded Case Circuit Breakers

T7 1200A Frame

AC Circuit Breakers and Switches

3 and 4 Pole

Motor Circuit Protectors

Higher Performances in Less Space

Field Installable Accessories and Trip Units

Dimensions	3P Fixed Version	10.55H x 8.26W x 6.06D
Weight	21.4 (lbs)	

Compliance with Standards

UL 489
CSA C22.2 No.5.1
IEC 60947-2
Standards
EC directive:

- "Low Voltage Directives" (LVD) no. 73/23 EEC
- "Electromagnetic Compatibility Directive" (EMC) no.89/336 EEC

The ABB Quality System complies with the international ISO 9001 - 2000 Standard (model for quality assurance in design, development, construction, and installation and service) and with the equivalent European EN ISO 9001 and Italian UNI EN ISO 9001 Standards

Interrupting ratings (RMS sym. kAmps)		T7	
Continuous Current Rating		1200	
Number of Poles		3-4	
	S	Н	L
AC			
240V	65	100	150
480V	50	65	100
600V	25	50	65

Company Quality Systems and Environmental Systems

The new Tmax series has a hologram on the front, obtained using special anti-imitation techniques, which guarantees the quality and that the circuit breaker is an original ABB product.

Attention to protection of the environment and to health and safety in the work place is another priority commitment for ABB and, as confirmation of this, the company environmental management system has been certified by RINA in 1997, in conformity with the international ISO 14001 Standard. This certification has been integrated in 1999 with the Management System for Health and Safety in the workplace, according to OHSAS 18001 (British Standards), obtaining one of the first certification of integrated management System, QES (Quality, Environment,

Safety) issued by RINA. ABB - the first industry in the electro-mechanical section in Italy to obtain this recognition - thanks to a revision of the production process with an eye to ecology has been able to reduce the consumption of raw materials and waste from processing by 20%. ABB's commitment to safeguarding the environment is also shown in a concrete way by the Life Cycle Assessments of its products carried out directly by the ABB Research and Development in collaboration with the ABB Research Center. Selection of materials, processes and packing materials is made optimizing the true environmental impact of the product, also foreseeing the possibility of its being recycled.

Mounting

Fixed Drawout

Connections

Busbar connection or compression lugs Pressure-type terminals for bare cables Rear connections

Trip Unit

PR231/P, PR232/P, PR331DS, and PR332DS/P electronic trip unit

Auxiliary Devices for Indication and Control

- Auxiliary contacts AUX
- Undervoltage release UVR
- Shunt trip SOR
- Terminal covers
- Padlock provision PLL
- Direct rotary handle RHD
- Key lock KLF
- Early auxiliary contact AUE

- Transmitted rotary handle RHE
- Front extended terminal EF
- Front terminal for copper-aluminum FC CuAl
- Front extended spread terminal ES
- Rear orientated terminal R
- Phase separators
- Residual current relay (IEC Only)

oublication LV114 No. 1SXU210114E Printed in USA, Ap

ABB Inc.

Annex to the technical catalog

Tmax T8

Low voltage molded case circuit breaker up to 3000 A UL 489 and CSA C22.2 Standard

1SDC210026D0201 - 2008 Edition

Main characteristics

The Tmax family, conforming to the UL 489 and CSA C22.2 No. 5.1 Standards, is enriched with the Tmax T8 size, which allows 3000 A to be reached. Also available in the 1600 A, 2000 A and 2500 A frames, Tmax T8 is equipped with the same electronic trip units as Tmax T7, thereby guaranteeing extremely high performances able to satisfy all installation requirements. Adequately sized for the performances offered (W=16.8 / D=11.2 / H=15.0 in). Tmax T8 is able to interrupt the following short-circuit currents: 125 kA@480 V and 100 kA@600 V.

Main characteristics

General characteristics

The Tmax T8 size has both circuit breakers and molded case switches (MCS). The following tables show the main characteristics of these ranges.

Circuit breakers for power distribution

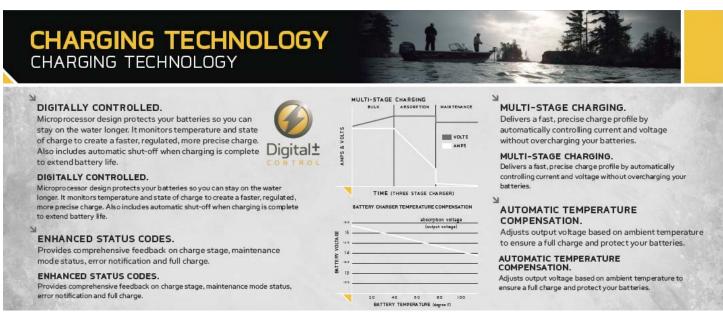
Frame size			[A]
Number of poles			[No]
Rated voltage		(AC) 50-60 Hz	[V]
		(DC)	[V]
Test voltage (1 min) 50-60 Hz			[V]
Interrupting ratings			[kA rms]
	240 V AC		[kA rms]
	480 V AC		[kA rms]
	600 V AC		[kA rms]
Trip units	Electronic	PR232/P-T8	
		PR331/P	
		PR332/P	
Dimensions fixed version (3p)		Н	[in-mm]
		W	[in-mm]
		D	[in-mm]
Mechanical life			[operations]
Weight (fixed 3p)		1600/2000/2500 A	[lbs]
		3000 A	[lbs]

Tmax T8
1600/2000/2500/3000
3/4
600
3000
V
125
125
100
15.0 - 382
16.8 - 427
11.2 - 282
15000
161
236

Molded case switches (MCS)

The Tmax T8 MCS are derived from the corresponding circuit breakers, of which they keep the overall dimensions, the versions, the fixing systems and the possibility of mounting accessories unchanged. This version only differs from the circuit breakers in the absence of the protection trip units. All molded case switches comply with the UL 489 and CSA C22.2 Standards and are self-protected.

Rating		[A]
Poles		[No]
Magnetic override		[A]
Rated voltage	AC (50-60 Hz)	[V]
	DC	[V]


Tmax T8V-D
2000/2500/3000
3/4
40000
600
_

Digital Linear Chargers

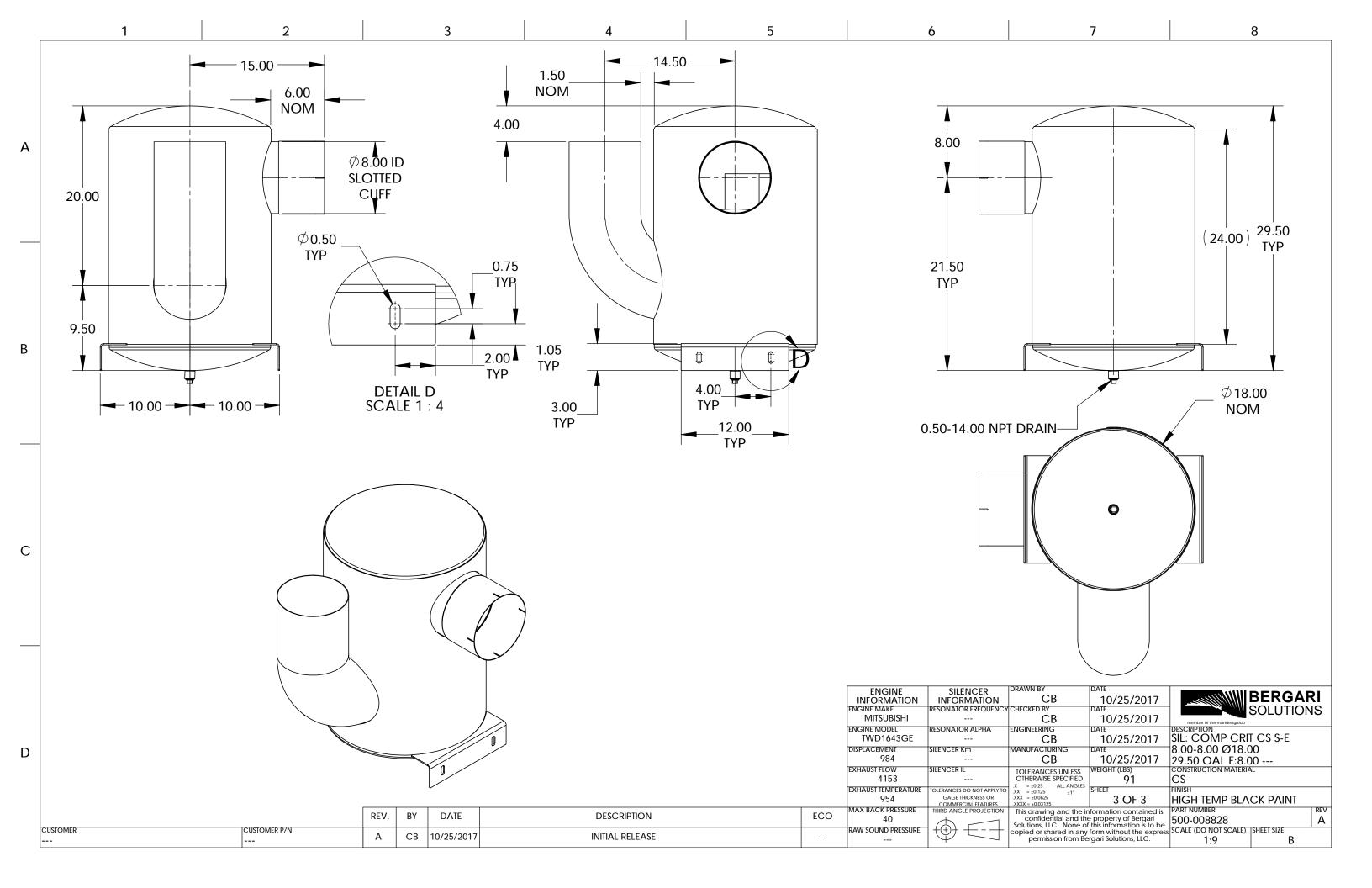
Specifications (cont.)

New 4-color package design

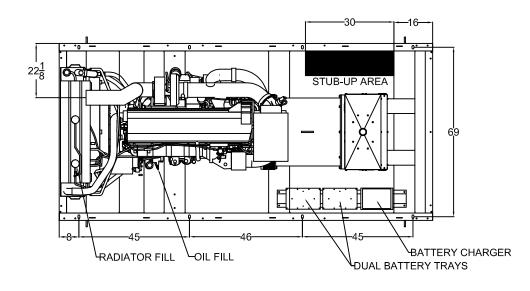
Digital Linear Chargers

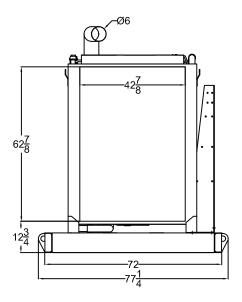
Specifications

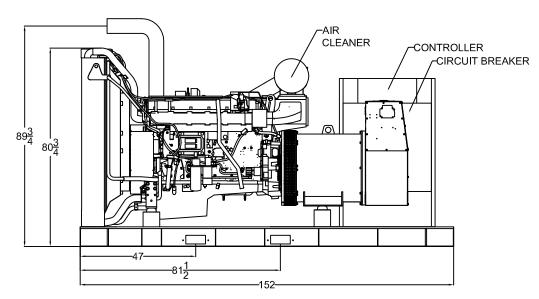
- Waterproof, shock-and vibration-resistant aluminum construction
- Saltwater tested and fully corrosion-resistant
- · Short circuit, reverse polarity, and ignition protected
- For use with 12V/6 cell batteries that are flooded/wet cell, maintenance free or starved electrolyte (AGM) only
- FCC compliant
- UL listed to marine standard 1236
- 3 year warranty
- Replaces all existing current on-board chargers (excluding portables)
- No Price Increase
- Availability: November 2010



DIGITAL LINEAR ON-BOARD CHARGERS		
PRODUCT	PRODUCT	
CODE	DESCRIPTION	
1821065	MK 106D (1 bank x 6 amps)	
1821105	MK-110D (1 bank x 10 amps)	
1822105	MK-210D (2 bank x 5 amps)	
1823155	MK-315D (3 bank x 5 amps)	
1822205	MK-220D (2 bank x 10 amps)	
1823305	MK-330D (3 bank x 10 amps)	
1824405	MK-440D (4 bank x 10 amps)	
1822305	MK-230D (2 bank x 15 amps)	
1823455	MK-345D (3 bank x 15 amps)	
1824605	MK-460D (4 bank x 15 amps)	

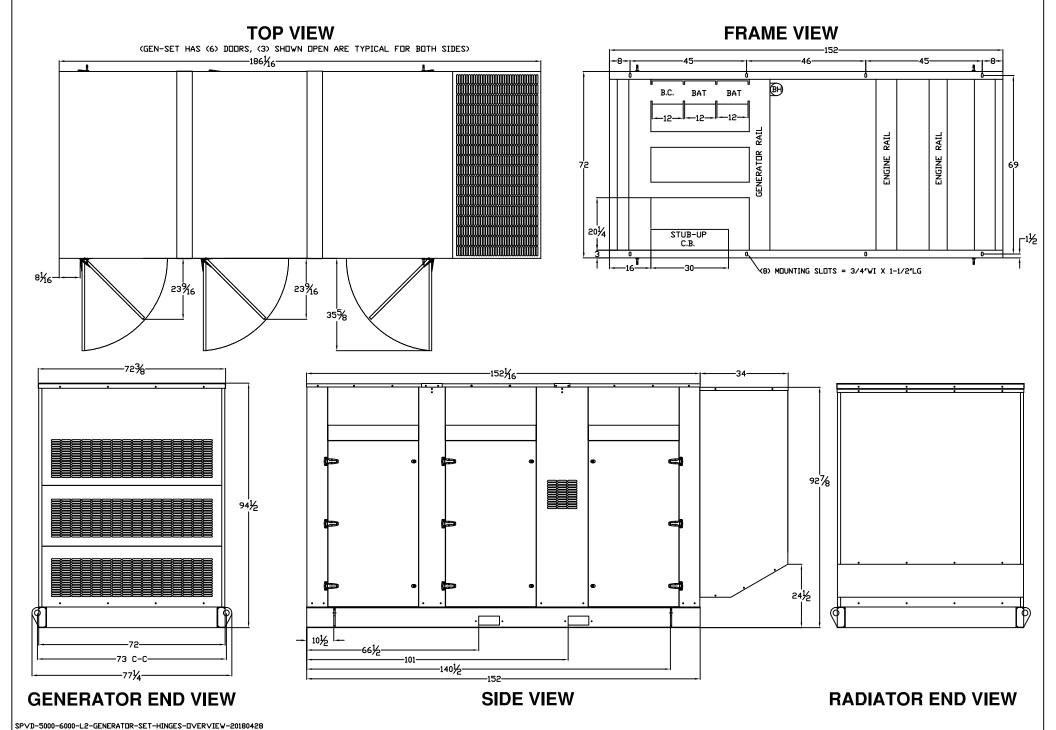






SPVD-5000 OPEN DIMENSIONAL OVERVIEW

TOP VIEW



RADIATOR VIEW

SIDE VIEW

LEVEL 2 ENCLOSURE OUTLINE DIMENSIONS FOR SPVD-5000 THRU SPVD-6000

