

LIQUID COOLED DIESEL ENGINE GENERATOR SET

Model		STANDBY	PRIME
Model	HZ	130°C RISE	105°C RISE
T4D-1000-60 HERTZ	60	100	100

All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.

UL1446, UL508, UL142, UL498

NFPA 110, 99, 70, 37

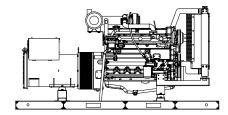
All generator sets meet NFPA-110 Level 1, when equipped with the necessary accessories and installed per NFPA standards.

NEC 700, 701, 702, 708

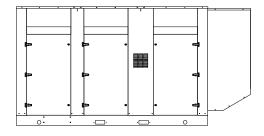
NEMA ICS10, MG1, ICS6, AB1

ANSI C62.41, 27, 59, 32, 480, 40Q, 81U, 360-05

SCF ASCE 7-05 & 7-10


All generator sets meet 180 MPH rating.

EPA EPA 40CFR Part 60, 89, 1039, 1048, 1054, 1065, 1068


60 HZ MODEL

T4D-1000

"OPEN" GEN-SET

There is no enclosure, so gen-set must be placed within a weather protected area, uninhabited by humans or animals, with proper ventilation. Silencer not supplied, installation requirements are not known. However, this item is available as optional equipment.

"LEVEL 2" HOUSED GEN-SET

Full aluminum weather protection and superior sound attenuation for specific low noise applications. Critical grade muffler is standard.

GENERATOR RATINGS

GENERATOR	VOLT	AGE	PH	HZ	130°C RISE ST	ANDBY RATING	105°C RISE P	RIME RATING
MODEL	L-N	L-L			KW/KVA	AMP	KW/KVA	AMP
T4D-1000-1-1	120	240	1	60	100/100	417	100/100	417
T4D-1000-3-2	120	208	3	60	100/125	347	100/125	347
T4D-1000-3-3	120	240	3	60	100/125	301	100/125	301
T4D-1000-3-4	277	480	3	60	100/125	151	100/125	151
T4D-1000-3-16	346	600	3	60	100/125	120	100/125	120

RATINGS: All three phase gen-sets are 12 lead windings, rated at .8 power factor. 130° C "STANDBY RATINGS" are strictly for gen-sets that are used for back-up emergency power to a failed normal utility power source. This standby rating allows varying loads, with no overload capability, for the entire duration of utility power outage. 105° C "PRIME RATINGS" are strictly for gen-sets that provide the prime source of electric power, where normal utility power is unavailable or unreliable. A 10% overload is allowed for a total of 1 hour, within every 12 hours of operation, on every PRIME RATED systems. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based 130°C (standby), and 105°C (prime) R/R winding temperature, within a maximum 40°C ambient condition. Generators operated at standby power ratings must not exceed the temperature rise limitation for class H insulation system, as specified in NEMA MG1-22.40. Specifications & ratings are subject to change without prior notice.

APPLICATION & ENGINEERING DATA FOR MODEL T4D-1000-60 HZ

GENERATOR SPECIFICATIONS

Model & Type UCI274E-311, 4 Pole, 12 Lead, Three Phase
Exciter
Voltage Regulator
Voltage Regulation
Frequency
Frequency
Unbalanced Load Capability
One Step Load Acceptance
Total Stator and Load Insulation
Temperature Rise
3 Ø Motor Starting @ 30% Voltage Dip (208-240V)1500 kVA 3 Ø Motor Starting @ 30% Voltage Dip (480V-600V) 2300 kVA Bearing
3 Ø Motor Starting @ 30% Voltage Dip (480V-600V) 2300 kVA Bearing
Bearing
Coupling Direct flexible disc.
Coupling
Total Harmonic Distortion Max 3½% (MIL-STD705B)
Telephone Interference Factor Max 50 (NEMA MG1-22)
Deviation Factor
Alternator Self ventilating and drip-proof
Ltd. Warranty Period

GENERATOR FEATURES

- World Renown Stamford Electric Generator having UL-1446 certification.
- Full generator protection with Basler DGC-2020 controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- Full load testing on all engine-generator sets, before shipping.

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE

ManufacturerVOLVO-PENTA
Model and TypeTAD571VE, 4 cycle, liquid Cooled
AspirationTurbo After Cooler, Air to Air
Charged Air Cooled SystemAir to Air
Cylinder Arrangement4 Cylinders, In-Line
Displacement Cu. In. (Liters)291 (4.76)
Bore & Stroke in (Cm)4.33 x 5.31 (11.0 x 13.5)
Compression Ratio
Main BearingsTin Overlay with Babbit Backing
Cylinder HeadCast Iron with overhead Cam
PistonsAluminum Alloy with Graphite Coating
CrankshaftInduction Hardened, Heat Treated Forged
Valves Heat Treated and Hardened Exhaust Valve
Governor Electronic, EMS 2.2
Frequency Regulation ± 1/4%
Air Cleaner
Engine Speed
Max Power, bhp (kwm) Standby175 (131)
BMEP: psi (MPa) Standby331 (2.3)
Ltd. Warranty Period 1 Year or 1000 hrs, first to occur

FUEL SYSTEM

Type	Diesel Fuel Oil (ASTM No. 2-D)
Combustion System	Direct Injection
Fuel Injection Pump	Electronic, Delphi E3
24 VDC Coolant heaters	Optional Equipment
Fuel Filter	Yes with Water Separator

FUEL CONSUMPTION

GAL/HR (LITER/HR)	STANDBY	PRIME	
100% LOAD	7.5 (28.4)	7.5 (28.4)	
75% LOAD	6.4 (24.1)	6.4 (24.1)	
50% LOAD	4.6 (17.3)	4.6 (17.3)	
DEF Consumption is 6% of fuel consumption			

OIL SYSTEM

Type	Full Pressure
Oil Pan Cap. W/ filter qt. (L)	16.9 (16)
Oil Filter	3, Replaceable Cartridge type

ELECTRICAL SYSTEM

CERTIFICATIONS

All engines are EPA emissions certified. All non-emergency stationary diesel engines are Tier IV Final compliant.

APPLICATION & ENGINEERING DATA FOR MODEL T4D-1000-60 HZ

COOLING SYSTEM

Type of System Air to Air, Charged	Air Cooler	
Coolant PumpPre-lubricated,		
Cooling Fan Type		
Fan Diameter inches (cm)	35.1 (89)	
Fan drive ratio	1.04:1	
Ambient Capacity of Radiator °F (°C)	131 (55)	
Engine Jacket Coolant Capacity gal. (L)	3.4 (13)	
Radiator Coolant Capacity gal. (L)	10.2 (38.6)	
Water Pump Capacity gpm (L/min)	122 (462)	
Heat Reject Coolant: Btu/min	12,682	
Air to Air Heat Reject, BTU/min.	11,715	
Heat Radiated to Ambient, BTU/min	4,253	
Low Radiator Coolant Level Shutdown	Standard	
Note: Coolant temp. shut-down switch setting at 228°F (109°C) with		
50/50 (water/antifreeze) mix.		

COOLING AIR REQUIREMENTS

Combustion Air cfm (m ³ /min)	332 (9.40)
Max Air Intake Restrictions:	
Clean Air Cleaner, KPA (psi)	
Radiator Cooling Air, SCFM (m³/min)	10,954 (310)

EXHAUST SYSTEM

EIIIII COI DIDIENI	
Exhaust Outlet Size	4"
Max. Back Pressure in KPA (in. H2O)	6 (24)
Exhaust Flow, at rated KW, CFM (m3/min)	689 (19.5)
Exhaust Temp, (Stack) °F (°C)	716 (380)

SOUND LEVELS MEASURED IN dB(A)

	Open	Level 2
	Set	Encl.
Level 2, SCR/Residential Silencer	82	78

Note: Open sets (no enclosure) have installed selective catalytic reduction/residential silencer system. Level 2 enclosure has installed selective catalytic reduction/residential silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft. (305m) above 3000 ft. (914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F (5.6°C) above 104°F (40°C)

DIMENSIONS AND WEIGHTS

	Open	Level 2
	Set	Enclosure
Length in (cm)	132 (335)	162 (412)
Width in (cm)	52 (132)	52 (132)
Height in (cm)	65 (165)	80 (203)
Net Weight lbs (kg)	3977 (1804)	5247 (2380)
Ship Weight lbs (kg)	4252 (1929)	5592 (2537)

BASLER DGC-2020 DIGITAL MICROPROCESSOR CONTROLLER

Basler DGC-2020

The "2020" controller is a highly advanced integrated gen-set control system for single gen-set applications. This controller includes a backlit LCD display which continuously displays the status of the engine and generator at all times.

Basler "DGC-2020" includes: Generator metering (including three phase) • Engine – Generator protections including IEEE-[27] under voltage, [32] power, [40] loss of excitation, [59] over voltage, [81] over and under frequency, Exercise timer • SAE J1939 engine ECU communications • Expansion capabilities for both inputs and outputs with expansion • Remote communications through RS-485 to Basler's RDP110 remote Display panel • (16) programmable contact inputs • (15) programmable contact outputs- (3) for up to 30AmpDC and (12) for up to 2 Amp DC • Illuminated Text Display • Front panel menu scroll buttons • Front panel operation mode buttons for STOP, RUN and AUTO • Alarm Silence and Lamp Test buttons

This controller includes expansion features including, RS485 (using MODBUS), direct USB connection with PC, expansion optioned using BESTCOMSPlus for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

Further expansion is available by adding the optional RDP-110 remote display panel module. This featured device will allow Four programmable LEDs (2) alarms and (2) pre-alarms • (17) alarms and pre-alarms displayed from Basler controller • audible alarm horn •

lamp test and alarm silence buttons • RD100 local power supply inputs of either 12vdc or 24vdc • connects through Basler controller through RS-485 communications protocol • conduit box included for (2) mounting configurations- either surface mount or semi-flush mounting.

STANDARD FEATURES FOR MODEL T4D-1000-60 HZ

STANDARD FEATURES

CONTROL PANEL:

Basler DGC-2020 digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- Low oil pressure
- Engine fail to start
- High engine temp
- Engine over speed
- Low Radiator Level
- Engine under speed
- Three auxiliary alarms
- Over & under voltage
- Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Fuel filter • Full flow Oil filter • Air filter • Fuel pump • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump • Thermostat • Pusher fan and guard • Exhaust manifold • Electronic Governor • 24 VDC battery charging alternator • Flexible fuel and exhaust connectors • Vibration isolators • Open coolant recovery system with 50/50 water to anti-freeze mixture • flexible oil & radiator hose • Shut-down sensors for low oil pressure, high coolant temp., low coolant level, high ambient temp.

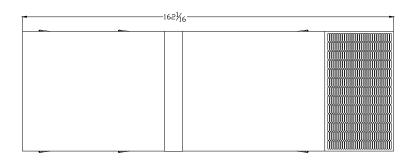
Design & specifications subject to change without prior notice. Dimensions shown are approximate. Contact Gillette for certified drawings. DO NOT USE DIMENSIONS FOR INSTALLATION PURPOSES.

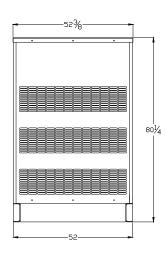
AC GENERATOR SYSTEM:

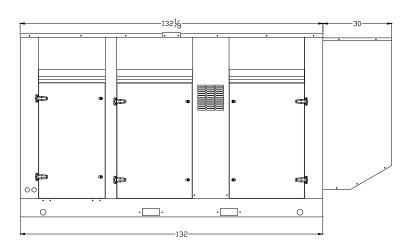
AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

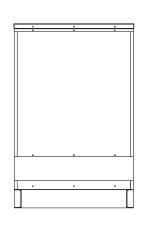
VOLTAGE REGULATOR:

1% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation


DC ELECTRICAL SYSTEM:


Battery trays • Battery cables • Battery hold down straps • 3-stage battery charger with float, absorption, & bulk automatic charge stages


WEATHER / SOUNDPROOF ALUMINUM HOUSING:


Corrosion Resistant Protection consisting of:

- (9) Heated and Agitated Wash Stages
- Zinc Phosphate Etching-Coating Stage
- Final Baked on Enamel Powder Coat
- 18/8 Stainless Steel Hardware

TAD571VE 129kW/2300rpm

Document No

22370691

12

Issue Index

Important

This Technical Data Sheet and the corresponding Installation Instructions provide important information to ensure the installed engine will operate according to the design specification in the Volvo Penta application for certification.

Requirements marked with \triangle are considered as critical for exhaust emissions compliance according to the design specification in the Volvo Penta application for certification.

Failing to follow and meet these instructions and requirements when installing a certified engine in a piece of nonroad equipment for use in the United States violates U.S. federal law (40 CFR 1068.105(b)), subject to fines or other penalities as described in the Clean Air Act.

General

In-line four stroke diesel engine with direct injection. Rotation direction, anti-clockwise viewed towards flywheel

Number of cylinders		4	
Displacement, total	liters	5,13	
	in ³	313	
Firing order		1-3-4-2	
Bore	mm	110	
		in	4,33
Stroke	mm	135	
		in	5,31
Compression ratio			17.5:1
Wet weight	Engine only	kg	583
(Not including after treatment system)		lb	1285
	Power pac	kg	877
		lb	1933
	Power pac, compact cooling	kg	802
	package	lb	1768

Performance				rpm	1500	1800	2000	2300
ICFN Power	129 kW	without fan		kW	126	129	129	129
				hp	171	175	175	175
		with fan		kW	123	124	123	124
		600 m	m pull	hp	167	168	167	169
Torque at:		ICFN Power	129 kW	Nm	800	685	616	536
				lbf ft	590	505	454	395
Max torque at engine	ICFN Power		1200 rpm	Nm		8	10	
speed				lbf ft		59	97	
Power tolerance				%	±3			
Mean piston speed				m/s	6,8	8,1	9,0	10,4
				ft/sec	22,1	26,6	29,5	34,0
Effective mean pressur	re at:	ICFN Power	129 kW	MPa	1,96	1,68	1,51	1,31
				psi	285	243	219	190
Total mass moment of	inertia, J (mR²)	·		kgm²	0,253			
(not including flywheel)			lbft ²	6,0				
Friction Power		kW	12	16	20	26		
				hp	16	22	27	35
Derating see Technic	al Diagrams				•			

VOLVO PENTA Document No Issue Index TAD571VE 129kW/2300rpm 22370691 12

Cold start pe	erformance
---------------	------------

*Cold start limit temperature	without starting aid	°C		-15	
		°F		5	
	with manifold heater 4 kW	°C		-30	
		°F		-22	
	with manifold heater 4 kW and	°C		-35	
	block heater	°F	-31		
*Specify oil quality	Above -15°C; 15W40 Above -25°C; 10W30 Below -25°C; 5W30	·			
Block heater type	Make	Power kW	Engaged hours	Cooling water temp engine block	
	Volvo	1,5			

^{*} See also general section in the sales guide

Lubrication system

Lubrication system			T T	
Lubricating oil consumption (average	ge)	Vol%	0,05	
Oil system capacity including filters	<u> </u>	liter	16	
			US gal	4,23
Oil pan capacity:		Max	liter	13,5
			US gal	3,57
		Min	liter	9,5
			US gal	2,51
Oil change intervals/specifications	VDS4		h	500
			h	
Engine angularity limits:	front up		0	40
	front dowr	1	0	45
	side tilt		0	40
Oil pressure at rated power			kPa	425
			psi	62

Lubrication system

_usus			
Lubrication oil temperature in sump:	max	°C	125
		°F	257
Oil filtration efficiency	97%	μ	36
(in accordance with ISO 4548-12)	50%	μ	14

TAD571VE 129kW/2300rpm

Document No

22370691

Issue Index

12

Fuel system

Urea consumption (vol% of diesel consumption)	vol%	7%			
Fuel to conform to		EU EN590 US D975, 1-D and 2-D (Max 15ppm sulphur and 7% FAME)			
System supply flow at max. speed		liter/h	102		
		US gal/h	26,9		
Fuel supply line max. restriction		kPa	25		
(Measured at fuel inlet connection)		psi	3,6		
Fuel supply line max. pressure, during engine star	kPa	20			
(meassured at fuel inlet connection)		psi	2,9		
System return flow at max. speed		liter/h	60,0		
		US gal/h	15,9		
Fuel return line max. restriction		kPa	15		
(Measured at fuel return connection)		psi	2,2		
Max. allowable inlet fuel temp		°C	80		
(Measured at fuel inlet connection)		°F	176		
Prefilter / Water separator filtration efficiency	99%	μ	30		
Main fuel filter filtration efficiency	98%	μ	5		
(in accordance with ISO 19438) 96%		μ	4		
Governor type/make, standard	•		Volvo/ EMS 2.3		
Injection pump type/make		Denso HP3			

Intake and exhaust system	lı	nlet air temp	rpm	1500	1800	2000	2300
Charge air consumption ICFN Power 129 kN at:	W	25°C	m³/min	8,5	9,4	10,2	11,7
(+25°C and 100kPa)		77°F	cfm	300	332	360	413
\wedge							
See front page for important information							
Max allowable air intake restriction including	piping		kPa		(3	
			psi		0	,9	
Heat rejection to exhaust at:	ICFN Powe	r 129 kW	kW	73	74	75,6	86,9
			BTU/min	4146	4214	4299	4942
Exhaust gas temperature after turbine at:	ICFN Powe	r 129 kW	ů	411	380	362	364
			°F	772	716	684	687
\triangle							
See front page for important information							
Max allowable back pressure in exhaust line	(after turbine)	kPa	11	11	12	13
Pipe dimension Ø:	102 m	nm	psi	1,6	1,6	1,7	1,9
\triangle							
See front page for important information							
Max allowable temperature drop between turbine	and SCR muffle	ar inlet (in	$\Delta^{\circ}C$	15			
average over a typical customer cycle (not stationary points)).			Δ°F	27			
SCR muffler pressure drop			kPa	5	5	6	6
(at exhaust gas flow and exhaust temp given)			psi	0.7	0,7	0,9	0,9
Exhaust gas flow at: ICFN Pow		r 129 kW	m³/min	18,6	19,5	20,3	23
(temp and pressure after turbine at the		-		,	,	,	
corresponding power setting)			cfm	657	689	717	812

TAD571VE 129kW/2300rpm

Document No

Issue Index

Cooling system	rpm	1500	1800	2000	2300			
Heat rejection radiation f	rom engine at:	ICFN Power 129 kW	kW	7	6	4,8	5	
			BTU/min	387	318	273	284	
Heat rejection to coolant	at:	ICFN Power 129 kW	kW	70	77	80,9	84,2	
			BTU/min	3981	4356	4601	4788	
Radiator cooling system	type	•			Closed	circuit		
Standard radiator core a	rea	ICFN Power 129 kW	m²		0	,6		
			foot ²		6,	46		
Compact cooling packag	ge radiator core area	ICFN Power 129 kW	m²		0,	28		
			foot ²		3,	01		
Fan diameter	600 mm	ICFN Power 129 kW	mm		60	00		
			in		23	,62		
Fan power consumption	600 mm pull		kW	3,0	5,2	6,3	4,7	
			hp	4	7	9	6	
Fan drive ratio	fan Ø600				1.4	4:1		
Coolant capacity:	engine		liter		1	3		
		US gal	3,4					
	engine + standard ra	liter	47					
	expansion tank	US gal	12,4					
	engine + compact c	liter	31					
	with hoses and expa	ansion tank	US gal	8,2				
Coolant pump			drive/ratio		belt/1	,40:1		
Coolant flow with standa	rd system		l/s	5,4	6,5	7,2	8,2	
			US gal/s	1,4	1,7	1,9	2,2	
Minimum coolant flow			l/s				4,5	
			US gal/s				1,2	
Maximum outer circuit re	estriction incl. piping		kPa		40),0		
			psi		5,8			
Thermostat:		start to open	°C		8	5		
			°F		18	35		
		fully open	°C		9	5		
			°F		20	03		
Maximum static pressure			kPa	.	1	10		
(expansion tank height +		g)	psi		16,0			
Minimum static pressure			kPa	.	8	5		
(expansion tank height + pressure cap setting)			psi		12	2,3		
Standard pressure cap setting			kPa			00		
			psi	14,5				
Maximum top tank temperature			°C		107			
	°F		2:	25				
Recommended Draw down capacity. The difference between min coolant level in the expansion tank and the lowest								
		pansion tank and the lowest	liter			2		

TAD571VE 129kW/2300rpm

Document No

22370691

12

Issue Index

Charge air cooler system	rpm	1500	1800	2000	2300	
Heat rejection to charge air cooler	ICFN Power 129 kW	kW	21,2	23,7	24,7	28,6
		BTU/min	1206	1348	1405	1626
Charge air mass flow	ICFN Power 129 kW	kg/s	0,165	0,184	0,198	0,228
Charge air inlet temp.	ICFN Power 129 kW	°C	177	177	174	177
(Charge air temp after turbo compressor)		°F	351	351	345	351
\triangle						
See front page for important information						
Max allowable Charge air outlet temp.		°C	49	49	50	50
(Charge air temp after charge air cooler)		°F	120	120	122	122
\triangle						
See front page for important information					4.0	4.0
Maximum pressure drop over charge air coo	oler incl. piping	kPa	8	9	10	12
		psi	1,16	1,31	1,45	1,74
Charge air pressure (relative)		kPa	197	199	191	172
(After charge air cooler)		psi	28,57	28,86	27,70	24,95
Standard charge air cooler core area		m²		0	,5	
		foot ²		5,	38	
Compact charge air cooler core area		m²		0,22		
		foot ²		2,	37	

Cooling performance: 0,6 m² radiator and 600mm fan, pull

Cooling air flow and maximum additional external restriction at different radiator air temperatures based on 107°C TTT and std coolant. Valid at 1 atm.

				ICFN Power 129 kW				
Engine speed	Engine power	Air or	n temp	Ai	r flow	ow External restric		
rpm	kW hp	°C	°F	m ³ /s	ft ³ /s	Pa	psi	
							•	
1500	121	77	171	6,2	219,0	0		
	165	77	170	5,9	208,4	100	0,015	
		76	169	5,8	204,8	200	0,029	
		74	165	5,2	183,6	300	0,044	
2300	129	76	169	7,6	268,4	0		
	175	76	168	7,4	261,3	100	0,015	
		75	167	7,2	254,3	200	0,029	
		75	166	7,1	250,7	300	0,044	

Cooling performance: 0,28 m² radiator and 600mm fan, pull

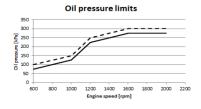
Cooling air flow and maximum additional external restriction at different radiator air temperatures based on 107°C TTT and 40% coolant. Valid at 1 atm.

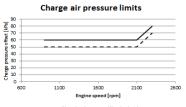
				ICFN Power 129 kW				
Engine speed	Engine power	Air or	n temp	Air flow		External restriction		
rpm	kW hp	°C	°F	m³/s	ft ³ /s	Pa	psi	
1500	121 165	56 55	133 130	5,9	208,4 201,3	0	0,015	
	105	52 47	126 116	5,7 5,4 4,8	190,7 169,5	200	0,015 0,029 0,044	
2300	129	55	131	7,0	247,2	0	,	
	175	54 53	130 127	6,9 6,6	243,7 233,1	100 200	0,015 0,029	
		51	123	6,2	219,0	300	0,044	

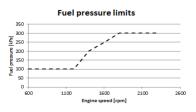
TAD571VE 129kW/2300rpm

Document No

22370691


Issue Index


Engine management system


Functionality	Alto	ernatives		Default setting
Governor mode				Isochronous
	Droop	Isochronous		
Governor droop	10	125	Nm/rpm	
Governor response	Adjustab	le PI constants		
Idle speed	600	900	rpm	700
Stop function				Replaced by "Ignition of stop engine"
				If preheat is available, preheat will be
			Request +	active at ignition on if temp low or
Preheating function	Ignition	Request	temp	demanded by driver.
Lamp test				No lamp test, not used any longer
Ignition of stop engine	Yes	No		No

Engine sens	ors and switch se	ttings	Alarm level		Engine	orotection
Parameter		Unit Setting range		Default setting	Level	Action. Default/Alternative
Oil temp		°C		125	125	Derate/Shut down
Oil pressure	Low idle	kPa		75,0	75	Shut down.
	Rated speed	kPa		275	275	Shut down.
Oil level				Low level		
Coolant temp)	°C		107	107	Derate/Shut down
Coolant level			See cooling system	On	Low level	Derate/Shut down
Fuel feed	Low idle	kPa		100		
pressure	Rated speed			300		
				Alarm when		
Water in fuel				closed		
EGR temp		°C		210	210	Derate/Shut down
Air filter press	sure drop			5kPa		
Altitude, abov	/e sea	m			700	Automatic derating,
						see section derating
Charge air te	mp	°C		120	120	Derate/Shut down
				Alarm map		
Charge air pr	essure	kPa		value	Alarm map value	Derate/Shut down
SCR temp		°C		515	515	Derate

Parameter	Warning	Alarm	Derated 0% to engine protection map	Derated 100% to engine protection map	Forced idle after 5 sec	Forced shut down after 0 sec
Coolant temp	102°C	107°C	107°C	112°C		
Oil temp	120°C	125°C	125°C	130°C		
Low oil pressure	Warning	Alarm				Alarm map value
	map value	map value				
High charge air temp	115°C	120°C	120°C	140°C		
High charge air pressure	Warning	Alarm		Alarm map		
	map	map		value		
	value	value				
EGR temp	200°C	210°C	210°C	220°C		

TAD571VE 129kW/2300rpm

Document No

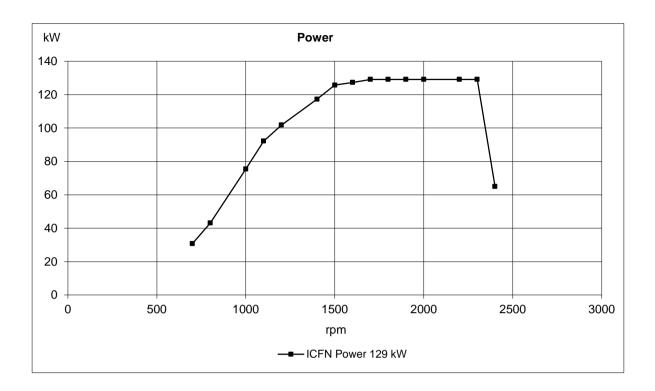
22370691

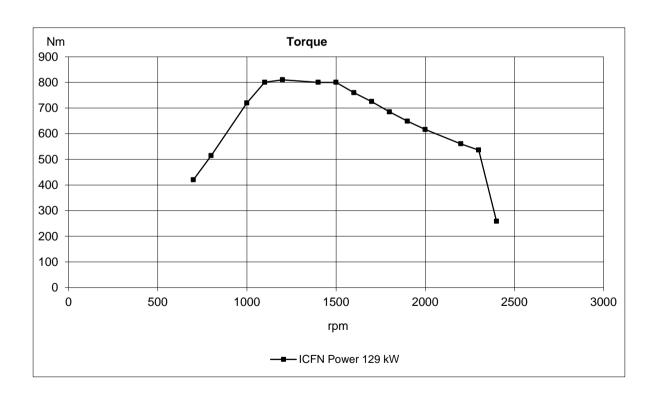
Issue Index

Electrical system

Liectrical System						
Voltage and type				24V		
Alternator:	make			MELCO		
	output	А		110/130		
	tacho output	Hz/alterna	tor rev.			
	drive ratio					
Starter motor:		make		MELCO		
		type		85P50 /90P55		
		output	kW	5 / 5.5		
			hp	6.8 / 7.5		
Number of teeth on:		flywheel		137		
		starter motor		10 / 12 teeth		
Inlet manifold heater (at 20	V)		kW	4		
Power relay for the manifold heater			Α	200		

Conditions:	Temperature	°C	25	0	-15
(5 mΩ main circuit resistance@ 20 °C)	Battery	Ah / CCA	100/700	100/700	100/700
Crank speed		rpm	197	150	123
Crank current		A	173	265	320
Starter input power during crank		kW	3,90	4,70	5,20
Battery power during crank		kW	4,00	5,10	5,70
Min battery @ 0°C		Ah / CCA	'	l .	l.

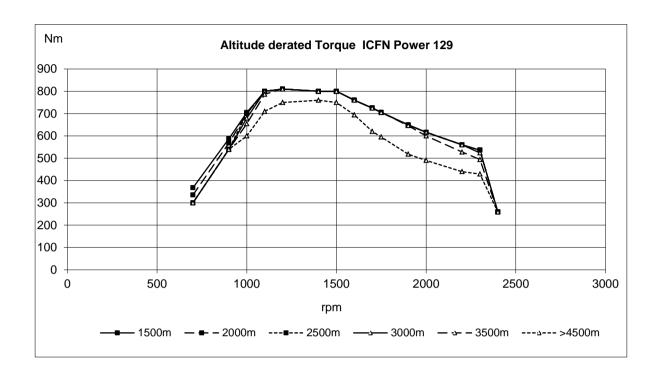

Power take off		rpm	1400	1800	2000	2300	
Front end in line with crank shaft max:*	0.02 kgm ²	Nm	866	817	750	610	
<u>Flywheel</u>		lbf ft	639	603	553	450	
SAE 2, STD 10" & 11,5 ", 1.303 kgm2	0.03 kgm ²	Nm	866	748	711	457	
	_	lbf ft	639	552	524	337	
	0.04 kgm ²	Nm	866	695	645	399	
	_	lbf ft	639	513	476	294	
Front end belt pulley load. Direction of load viewed	max left	kW	46	60	66	76	
from flywheel side:		hp	63	82	90	103	
	max down	kW	35	45	49	57	
		hp	48	61	67	78	
	max right	kW	46	60	66	76	
		hp	63	82	90	103	
Maximum power on Rear PTO on top of flywheel hou	sing(REPTO):*	kW	75				
		hp		102			
Speed ratio direction of rotation viewed from flywheel	side			1:1 Counter clockwise			
Maximum torque on PTO at compressor position:*		Nm		2	00		
		lbf ft		1.	48		
Speed ratio direction of rotation viewed from flywheel	side		1.	026:1 Cour	nter clockw	ise	
Timing gear at hydraulic pump PTO max:*		Nm		8	80		
		lbf ft		5	69		
Speed ratio direction of rotation viewed from flywheel			1.3:1 C	lockwise			
Max allowed bending moment in flywheel housing	SAE2	Nm		46	00		
		lbf ft		33	93		
Max. rear main bearing load		N		5000			
		lbf		112	24,0		


^{*} Maximum allowed torque at individual PTO s.

If more then one PTO output is used simultaniusly, calculations needs to be performed to determine available maximum. Available torque depends on application inertia.

Document No **22370691**

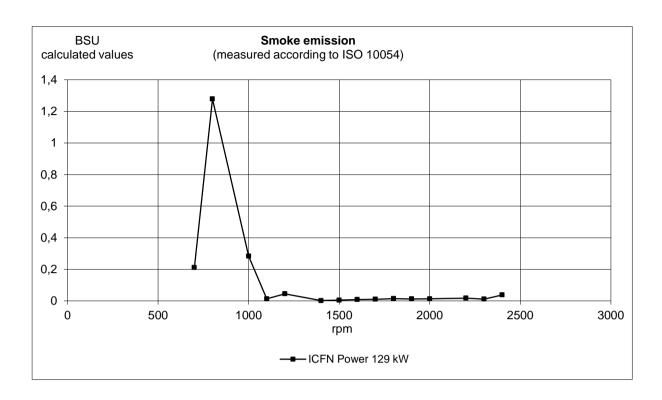
Issue Index

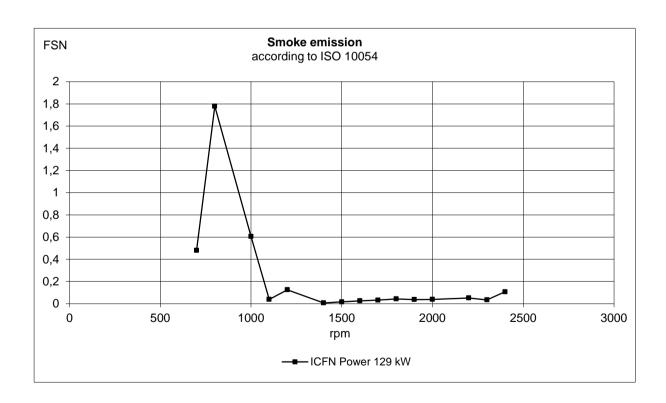


TAD571VE 129kW/2300rpm

Document No

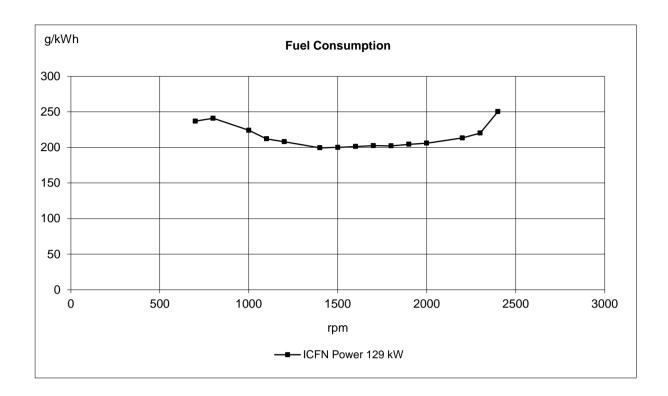
22370691


Issue Index



Document No

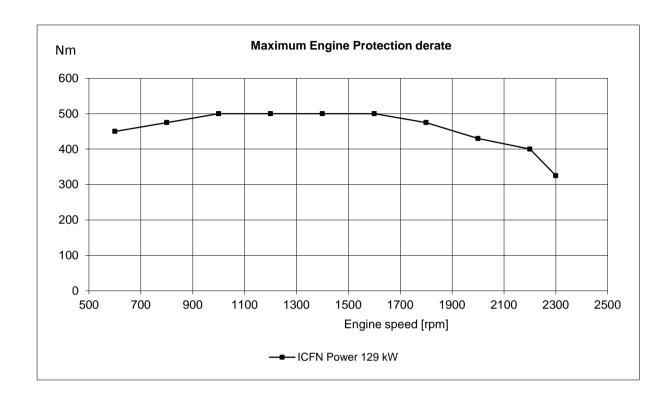
22370691

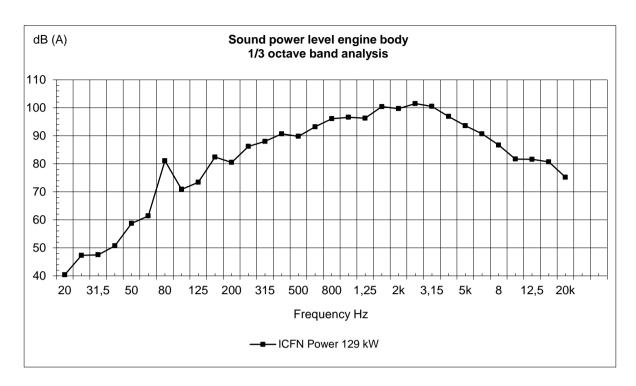

Issue Index

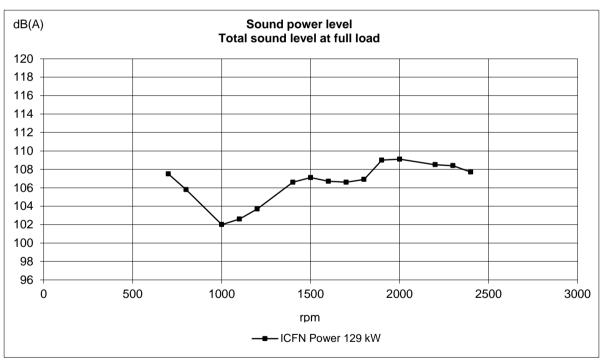


Document No **22370691**

Issue Index

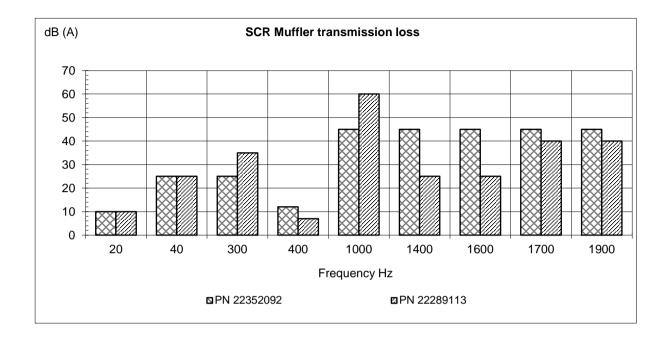





Document No

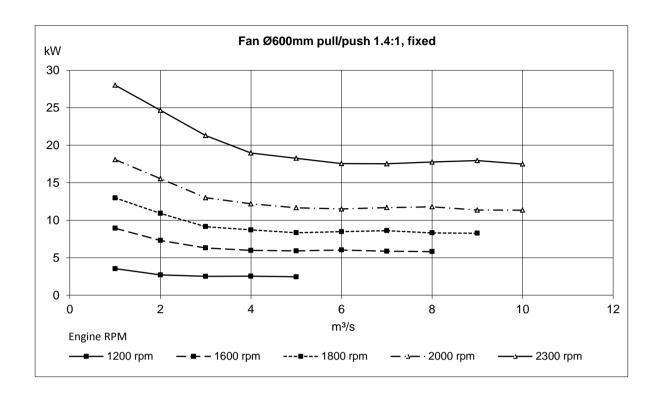
22370691

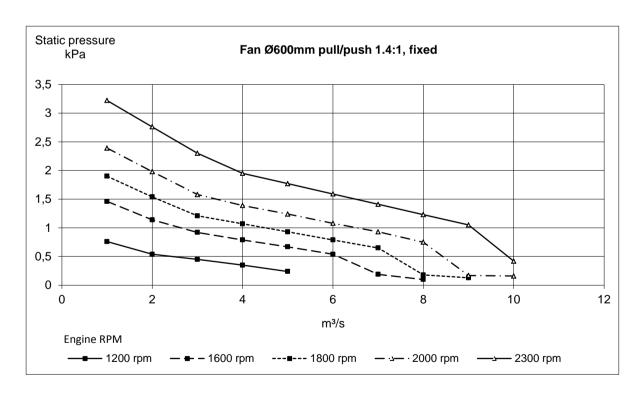
Issue Index

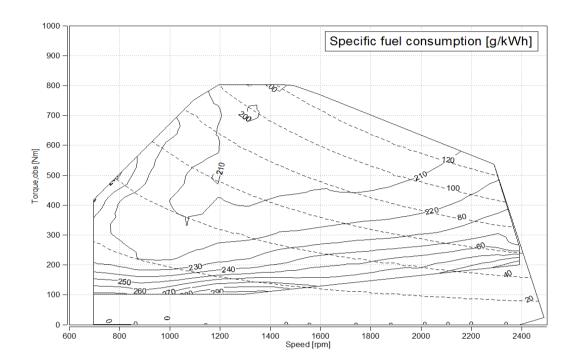


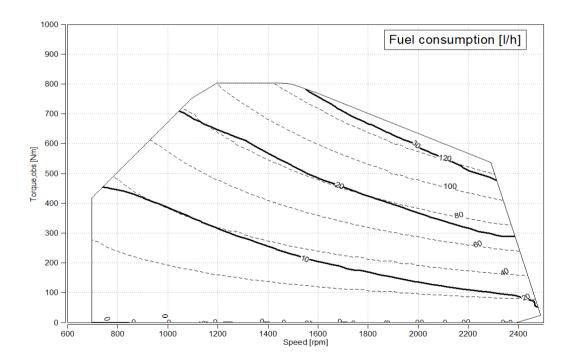
TAD571VE 129kW/2300rpm

Document No **22370691**

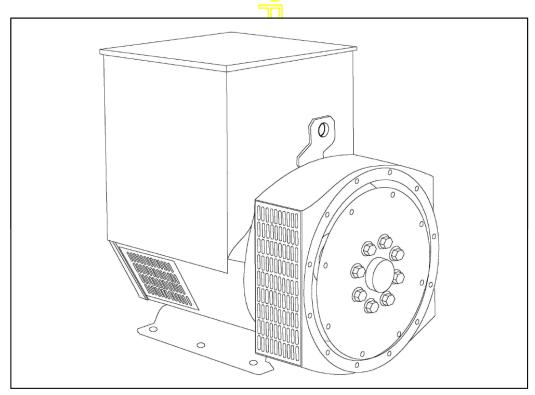

Issue Index




Document No


22370691

Issue Index



STAMFORD

UCI274E - Winding 06

Technical Data Sheet

STAMFORD

UCI274E

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling. The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit

parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system. The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external

faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full

load to be applied to the generator in a single step.

MV224 AVD

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally over voltage protection built-in and short circuit current level adjustments as an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Dedicated Single Phase windings have 4 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half kev.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

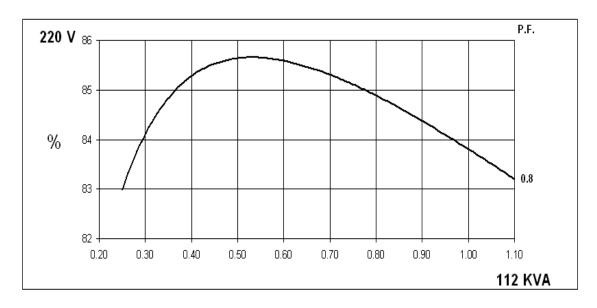
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

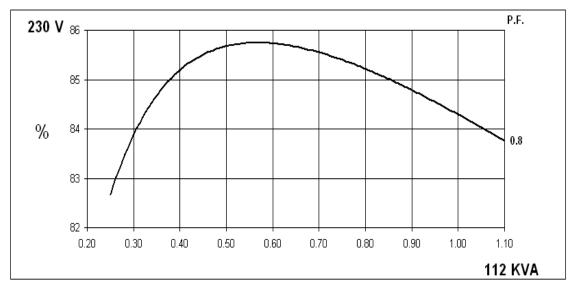
3% for every 5 C by which the operational ambient temperature exceeds 40 C.

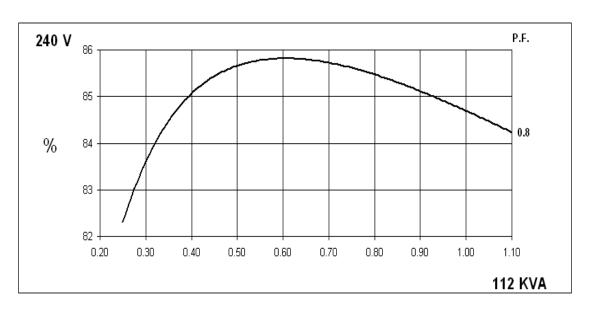
Note: Requirement for operating in an ambient exceeding 60 C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

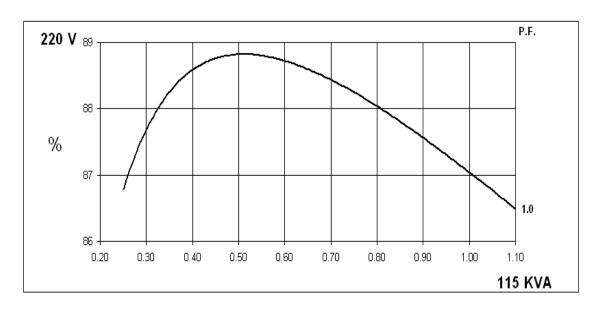

WINDING 06

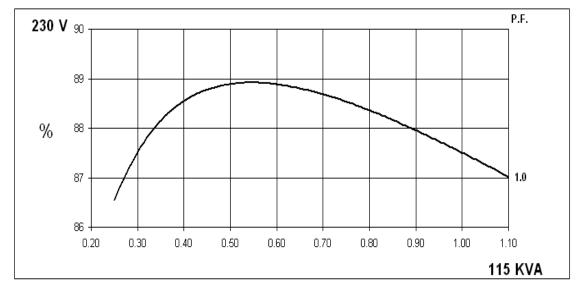

CONTROL SYSTEM	SEPARATELY E	XCITED BY P.M.	G						
A.V.R.	MX341	MX321	<u> </u>						
VOLTAGE REGULATION	± 1%	± 0.5 %	With 4% ENGIN	E GOVERNING					
SUSTAINED SHORT CIRCUIT		EFER TO SHORT CIRCUIT DECREMENT CURVES (page 7)							
303 TAINED SHOKT CIRCOTT	INELEK TO ONO	KT GINGGIT BEG	JACINICIA I GOICE	Lo (page 1)					
CONTROL SYSTEM	SELF EXCITED								
A.V.R.	SX460	SX460 AS440							
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% ENGIN	E GOVERNING					
SUSTAINED SHORT CIRCUIT	SERIES 4 CONT	ERIES 4 CONTROL DOES NOT SUSTAIN A SHORT CIRCUIT CURRENT							
INSULATION SYSTEM	T		CLA	SS H					
PROTECTION			IF	P23					
RATED POWER FACTOR			C).8					
STATOR WINDING			SINGLE LAYER	R CONCENTRIC					
WINDING PITCH			TWO	THIRDS					
WINDING LEADS				4					
MAIN STATOR RESISTANCE		0.015	Ohms AT 22°C	SERIES CONNE	CTED				
MAIN ROTOR RESISTANCE			1.34 Ohm	ns at 22°C					
EXCITER STATOR RESISTANCE			20 Ohm:	s at 22°C					
EXCITER ROTOR RESISTANCE			0.091 Ohms PEF	R PHASE AT 22°C	;				
R.F.I. SUPPRESSION	BS EN 61	000-6-2 & BS EN	61000-6-4,VDE	0875G, VDE 0875	N. refer to factory	for others			
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-DIST	ORTING LINEAR	LOAD < 5.0%				
MAXIMUM OVERSPEED			2250 F	Rev/Min					
BEARING DRIVE END			BALL. 631	5-2RS (ISO)					
BEARING NON-DRIVE END			BALL. 631	0-2RS (ISO)					
		1 BEARING			2 BEARING				
WEIGHT COMP. GENERATOR		492 kg			511 kg				
WEIGHT WOUND STATOR		180 kg			180 kg				
WEIGHT WOUND ROTOR		167.51 kg			156.55 kg				
WR² INERTIA		1.3271 kgm²			1.2765 kgm ²				
SHIPPING WEIGHTS in a crate		525 kg			539 kg				
PACKING CRATE SIZE	1	23 x 67 x 103(cm)	1	23 x 67 x 103(cm)			
TELEPHONE INTERFERENCE		THF<2 <mark>%</mark>			TIF<50				
COOLING AIR		\mathbb{Z}	0.617 m³/se	ec 1308 cfm					
VOLTAGE SERIES	2:	20	2	230	24	40			
VOLTAGE PARALLEL	1	10	1	15	1:	20			
POWER FACTOR	0.8	1.0	0.8	1.0	0.8	1.0			
kVA BASE RATING FOR REACTANCE VALUES	112	115	112	115	112	115			
Xd DIR. AXIS SYNCHRONOUS	2.64	2.71	2.42	2.48	2.22	2.28			
X'd DIR. AXIS TRANSIENT	0.25	0.26	0.23	0.24	0.21	0.22			
X''d DIR. AXIS SUBTRANSIENT	0.17	0.17	0.15	0.15	0.14	0.14			
Xq QUAD. AXIS REACTANCE	1.71	1.76	1.57	1.61	1.44	1.48			
X"q QUAD. AXIS SUBTRANSIENT	0.21	0.22	0.20	0.21	0.18	0.18			
XL LEAKAGE REACTANCE	0.10	0.10	0.09	0.09	0.08	0.08			
X2 NEGATIVE SEQUENCE	0.19	0.20	0.17	0.17	0.16	0.16			
X ₀ ZERO SEQUENCE	0.11	0.11	0.10	0.10	0.09	0.09			
	RI	EACTANCES ARI	SATURATED						
T'd TRANSIENT TIME CONST.			0.0	032s					
T"d SUB-TRANSTIME CONST.			0.	01s					
T'do O.C. FIELD TIME CONST.			0.	85s					
Ta ARMATURE TIME CONST.			0.0	007s					
SHORT CIRCUIT RATIO	<u> </u>		1/	/Xd					

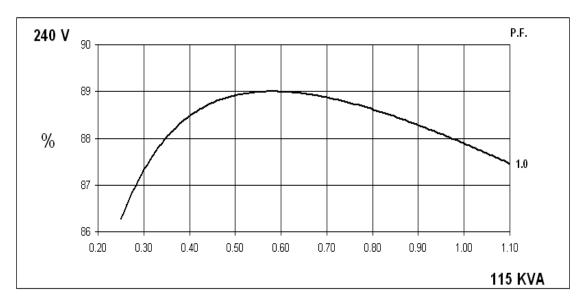


Winding 06 / 0.8pf

SINGLE PHASE EFFICIENCY CURVES

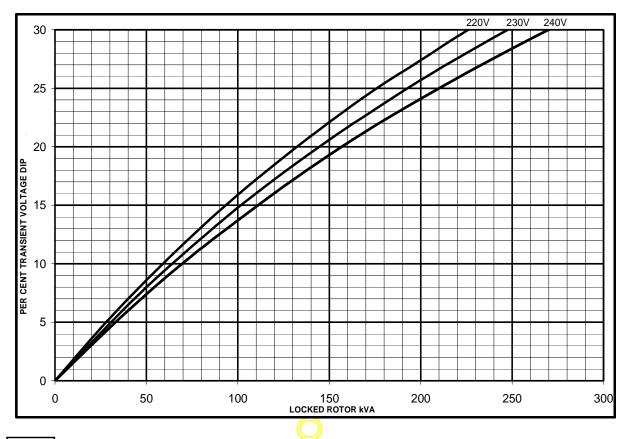


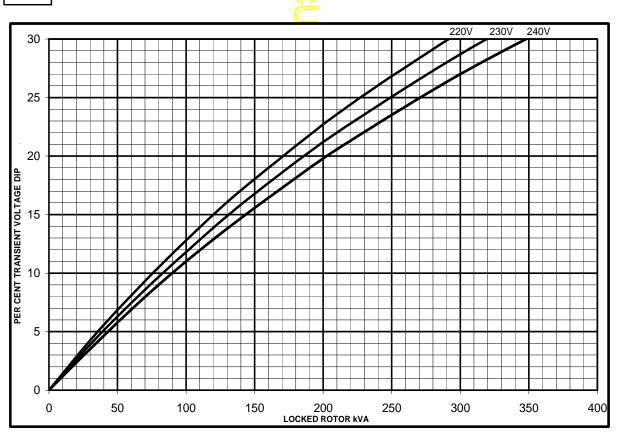




Winding 06 / 1.0pf

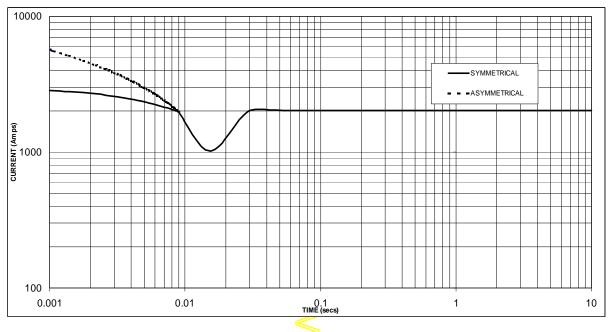
SINGLE PHASE EFFICIENCY CURVES

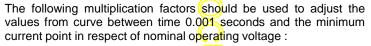



UCI274E Winding 06

SX

Locked Rotor Motor Starting Curves


MX


UCI274E Winding 06

Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on series connection.

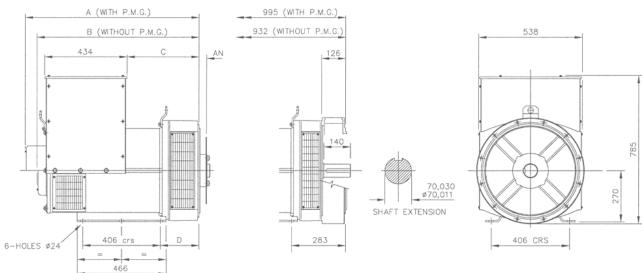
Sustained Short Circuit = 2030 Amps

Voltage	Factor
220V	X 1.00
230V	X <mark>1.05</mark>
240V	X 1.09

The sustained current value is constant irrespective of voltage level

STAMFORD

UCI274E


Winding 06

60Hz

RATINGS

Class Tamp Diss	Class - Temp Rise Cont. F - 105/40°C		/40°C	Cont.	Cont. H - 125/40°C			Cont. F - 105/40°C			Cont. H - 125/40°C		
Class - Temp Rise		0.8pf			0.8pf			1.0pf			1.0pf		
Series (V)	220	230	240	220	230	240	220	230	240	220	230	240	
Parallel (V)	110	115	120	110	115	120	110	115	120	110	115	120	
kVA	100.0	100.0	100.0	112.0	112.0	112.0	100.0	100.0	100.0	115.0	115.0	115.0	
kW	80.0	80.0	80.0	89.6	89.6	89.6	100.0	100.0	100.0	115.0	115.0	115.0	
Efficiency (%)	84.4	84.8	85.1	83.8	84.3	84.7	87.7	88.1	88.4	87.0	87.5	87.9	
kW Input	94.8	94.3	94.0	106.9	106.3	105.8	114.0	113.5	113.1	132.2	131.4	130.8	

SIN	SINGLE BEARING ADAPTORS									
ADAPTOR	A	В	С	D						
SAE 1	928,3	865,3	389,3	216,3						
SAE 2	914	851	375	202						
SAE 3	914	851	375	202						

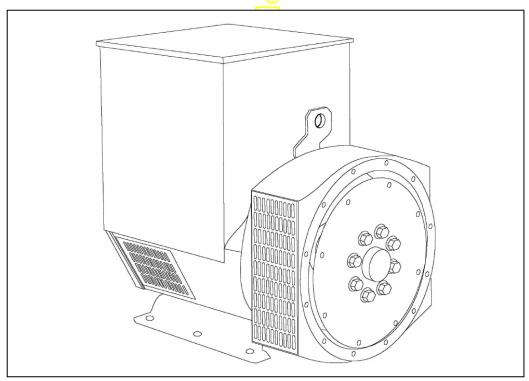
COUPLING	DISCS
DISC	AN
SAE 10	53,98
SAE 11,5	39,68
SAE 14	25,40

APPROVED DOCUMENT

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom

Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD

UCI274E - Winding 311

Technical Data Sheet

STAMFORD

UCI274E SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

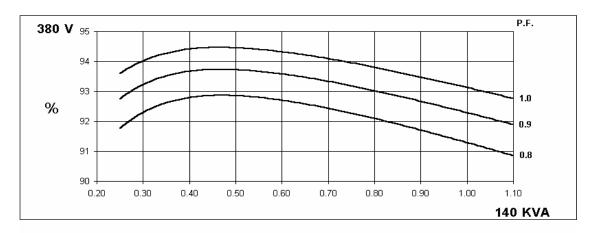
3% for every $5^{\circ}C$ by which the operational ambient temperature exceeds $40^{\circ}C.$

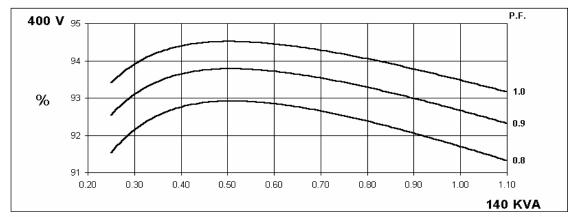
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

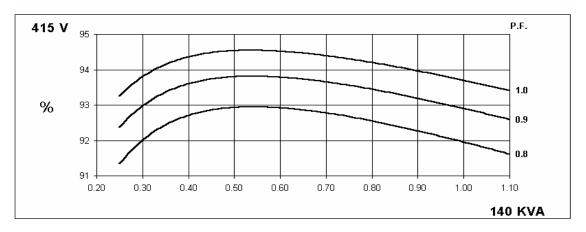
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

WINDING 311

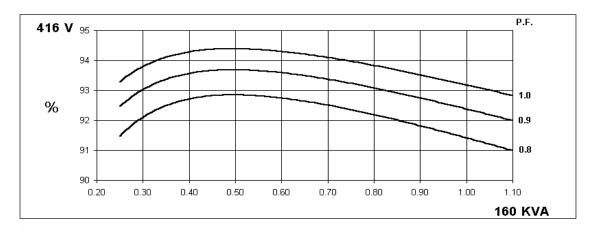

<u> </u>	1									
CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M.G.							
A.V.R.	MX321	MX341								
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4% EN	GINE GOVE	RNING					
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	/ES (page 7)					
CONTROL SYSTEM	SELF EXCIT	ΓED								
A.V.R.	SX460	SX460 AS440								
VOLTAGE REGULATION	± 1.0 %	± 1.0 %	With 4% EN	GINE GOVE	RNING					
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCUI	T CURRENT	-			
INSULATION SYSTEM				CLAS	SS H					
PROTECTION				IP2						
RATED POWER FACTOR				0.						
			DOI		CONCENTE	210				
STATOR WINDING			DOC			KIC .				
WINDING PITCH				TWO T						
WINDING LEADS				1:	2					
STATOR WDG. RESISTANCE		0.0317 (Ohms PER PI	HASE AT 22°	°C SERIES	STAR CONN	ECTED			
ROTOR WDG. RESISTANCE				1.34 Ohms	s at 22°C					
EXCITER STATOR RESISTANCE				20 Ohms	at 22°C					
EXCITER ROTOR RESISTANCE			0.091	Ohms PER	PHASE AT 2	2°C				
R.F.I. SUPPRESSION	BS EN	61000-6-2 8	BS EN 6100	0-6-4,VDE 0	875G, VDE 0	875N. refer t	o factory for	others		
WAVEFORM DISTORTION		NO LOAD <	: 1.5% NON-	DISTORTING	BALANCE	LINEAR LC	DAD < 5.0%			
MAXIMUM OVERSPEED				2250 R	ev/Min					
BEARING DRIVE END				BALL. 6315-	2RS (ISO)					
BEARING NON-DRIVE END				BALL. 6310-	, ,					
BEARING NON BRIVE END		1 BE/	ARING	D/ (E.E. 00 10	2110 (100)	2 BEA	RING			
WEIGHT COMP. GENERATOR			2 kg			511	kg			
WEIGHT WOUND STATOR			0 k g			180	kg			
WEIGHT WOUND ROTOR		167.	51 kg			156.5	55 kg			
WR ² INERTIA		1.327	1 kgm²			1.2765	kgm²			
SHIPPING WEIGHTS in a crate			5 <mark>kg</mark>			539				
PACKING CRATE SIZE			x 103(cm)			123 x 67 x	• • •			
TELEBLIONE INTERESENCE			Hz			60				
TELEPHONE INTERFERENCE			⁻ < <mark>2%</mark> ec 1090 cfm			TIF< 0.617 m³/sec				
COOLING AIR VOLTAGE SERIES STAR	380/220	400/231	41 5 /240	440/254	416/240	440/254	460/266	480/277		
VOLTAGE PARALLEL STAR	190/110	200/115	208/120	220/127	208/120	220/127	230/133	240/138		
VOLTAGE SERIES DELTA	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138		
KVA BASE RATING FOR REACTANCE		140	140	N/A	160	167.5	167.5	178.8		
VALUES										
Xd DIR. AXIS SYNCHRONOUS	2.34	2.11	1.96	-	2.68	2.51	2.29	2.25		
X'd DIR. AXIS TRANSIENT	0.21	0.19	0.18	-	0.25	0.23	0.21	0.21		
X"d DIR. AXIS SUBTRANSIENT	0.14	0.13	0.12	-	0.17	0.16	0.15	0.14		
Xq QUAD. AXIS REACTANCE X"q QUAD. AXIS SUBTRANSIENT	1.53 0.18	1.38 0.16	1.28 0.15	-	1.74 0.22	1.63 0.21	1.49 0.19	1.46 0.18		
XL LEAKAGE REACTANCE	0.18	0.10	0.13	-	0.09	0.08	0.19	0.18		
X2 NEGATIVE SEQUENCE	0.16	0.14	0.13	_	0.03	0.18	0.16	0.16		
X ₀ ZERO SEQUENCE	0.10	0.09	0.08	_	0.13	0.10	0.09	0.09		
REACTANCES ARE SATURAT	1		ALUES ARE	PER UNIT A						
T'd TRANSIENT TIME CONST.				0.03						
T"d SUB-TRANSTIME CONST.				0.0						
T'do O.C. FIELD TIME CONST.				0.8						
Ta ARMATURE TIME CONST.				0.00						
SHORT CIRCUIT RATIO	I			1//	\u					

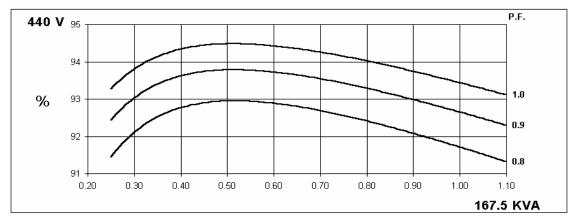

50 Hz

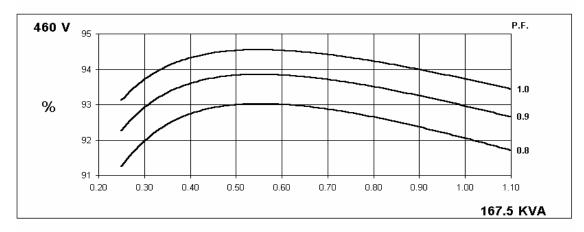

UCI274E Winding 311

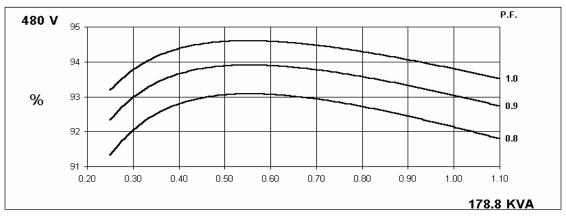
STAMFORD

THREE PHASE EFFICIENCY CURVES

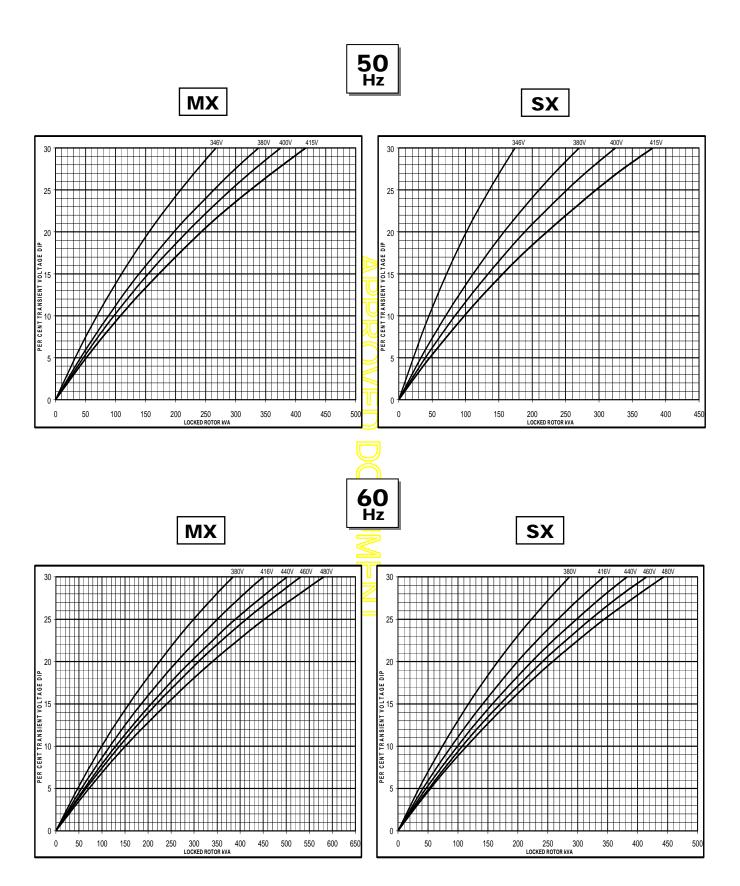


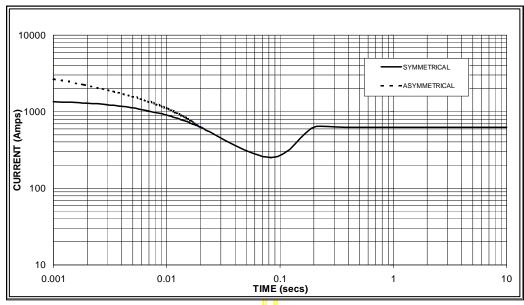

60 Hz


UCI274E Winding 311


STAMFORD

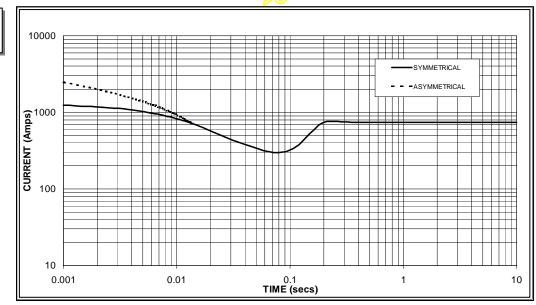
THREE PHASE EFFICIENCY CURVES




Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.


50 Hz

Sustained Short Circuit = 630 Amps

60 Hz

Sustained Short Circuit = 740 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50Hz		60Hz	
Voltage	Factor	Voltage	Factor
380v	X 1.00	416v	X 1.00
400v	X 1.07	440v	X 1.06
415v	X 1.12	460v	X 1.12
		480v	X 1.17

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

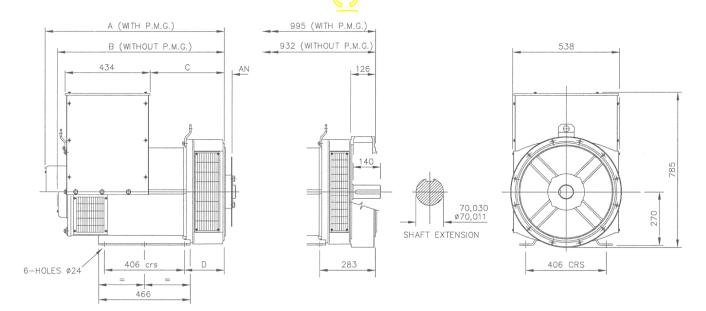
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown:

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732


UCI274E

Winding 311 / 0.8 Power Factor

RATINGS

Ī		Class - Temp Rise	Co	ont. F -	105/40°	.C	Co	ont. H -	125/40	°C	Sta	andby -	150/40	°C	Sta	andby -	163/27	°C
	50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
		Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Hz	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
ľ	••••••	kVA	125.0	125.0	125.0	N/A	140.0	140.0	140.0	N/A	145.0	145.0	145.0	N/A	150.0	150.0	150.0	N/A
		kW	100.0	100.0	100.0	N/A	112.0	112.0	112.0	N/A	116.0	116.0	116.0	N/A	120.0	120.0	120.0	N/A
		Efficiency (%)	91.7	92.1	92.3	N/A	91.3	91.7	92.0	N/A	91.1	91.6	91.8	N/A	91.0	91.4	91.7	N/A
		kW Input	109.1	108.6	108.3	N/A	122.7	122.1	121.7	N/A	127.3	126.6	126.4	N/A	131.9	131.3	130.9	N/A
_																		
	60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
	Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	1 12	Series Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
Ī		kVA	140.0	143.8	143.8	160.0	160.0	167.5	67.5	178.8	170.0	175.0	175.0	187.5	175.0	181.3	181.3	193.8
		kW	112.0	115.0	115.0	128.0	128.0	134.0	134.0	143.0	136.0	140.0	140.0	150.0	140.0	145.0	145.0	155.0
		Efficiency (%)	91.9	92.2	92.5	92.5	91.4	91.7	92.1	92.1	91.2	91.5	91.9	92.0	91.0	91.4	91.8	91.9
		kW Input	121.9	124.8	124.4	138.4	140.0	146.1	/ 145.5	155.3	149.1	153.0	152.3	163.0	153.8	158.7	158.0	168.7

DIMENSIONS

SIN	GLE BEAR	ING ADAF	TORS	
ADAPTOR	A	В	С	D
SAE 1	928,3	865,3	389,3	216,3
SAE 2	914	851	375	202
SAE 3	914	851	375	202

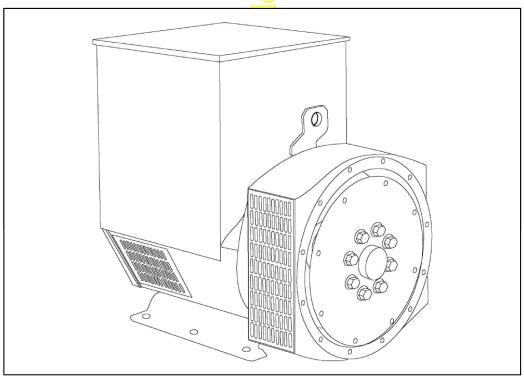
COUPLING	DISCS
DISC	AN
SAE 10	53,98
SAE 11,5	39,68
SAF 14	25.40

APPROVED DOCUMENT

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom

Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD

UCI274E - Winding 17

STAMFORD

UCI274E

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

SX460 AVR - STANDARD

With this self excited control system the main stator supplies power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three phase full wave bridge rectifier. This rectifier is protected by a surge suppressor against surges caused, for example, by short circuit.

AS440 AVR

With this self-excited system the main stator provides power via the AVR to the exciter stator. The high efficiency semiconductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This deexcites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 6 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5 C by which the operational ambient temperature exceeds 40 C.

Note: Requirement for operating in an ambient exceeding 60 C must be referred to the factory.

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

Front cover drawing typical of product range.

STAMFORD

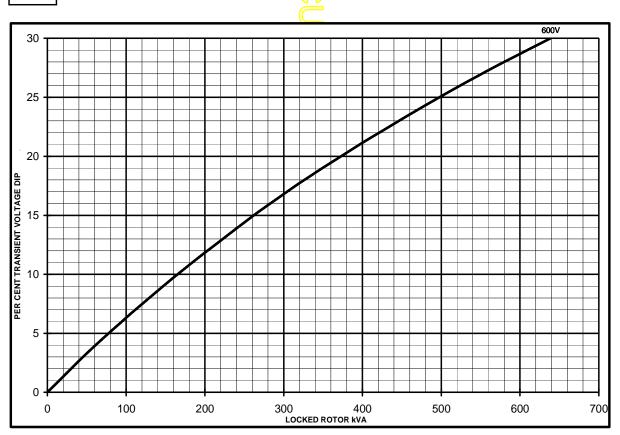
UCI274E

WINDING 17

CONTROL SYSTEM	SEPARATE	LY EXCITED	BY P.M	1.G.	
A.V.R.	MX321	MX341			
VOLTAGE REGULATION	± 0.5 %	± 1.0 %	With 4	% ENGINE GOVER	NING
SUSTAINED SHORT CIRCUIT				ECREMENT CURVE	
303TAINED SHORT CIRCUIT	KEI EK 10	SHOKI CIKC	OII DE	CKLINENT CORVE	(page 0)
CONTROL SYSTEM	SELF EXCIT	1	T		
A.V.R.	SX460	AS440			
VOLTAGE REGULATION	± 1.5 %	± 1.0 %	With 4	% ENGINE GOVER	NING
SUSTAINED SHORT CIRCUIT	SERIES 4 C	ONTROL DO	ES NO	T SUSTAIN A SHO	RT CIRCUIT CURRENT
INSULATION SYSTEM				CLAS	SH
PROTECTION				IP2	3
RATED POWER FACTOR				3.0	3
STATOR WINDING				DOUBLE LAYER	
WINDING PITCH				TWO TH	
WINDING FITCH WINDING LEADS	 			120	
		0.05.0	Name D		SERIES STAR CONNECTED
STATOR WDG. RESISTANCE		0.05 C	nms P		
ROTOR WDG. RESISTANCE	<u> </u>		加	1.34 Ohms	
EXCITER STATOR RESISTANCE				20 Ohms	
EXCITER ROTOR RESISTANCE				0.091 Ohms PER	PHASE AT 22°C
R.F.I. SUPPRESSION	BS E			· · · · · · · · · · · · · · · · · · ·	375G, VDE 0875N. refer to factory for others
WAVEFORM DISTORTION		NO LOAD	< <mark>1.5%</mark>	NON-DISTORTING	BALANCED LINEAR LOAD < 5.0%
MAXIMUM OVERSPEED				2250 Re	ev/Min
BEARING DRIVE END				BALL. 6315-	2RS (ISO)
BEARING NON-DRIVE END				BALL. 6310-	2RS (ISO)
		1 BE/	ARING		2 BEARING
WEIGHT COMP. GENERATOR			2 kg		511 kg
WEIGHT WOUND STATOR			O kg 🥖		180 kg
WEIGHT WOUND ROTOR			5 <mark>1 kg</mark>		156.55 kg
WR2 INERTIA	 		1 kgm² 5 kg		1.2765 kgm²
SHIPPING WEIGHTS in a crate PACKING CRATE SIZE	 	123 x 67	_	·m)	539 kg 123 x 67 x 103(cm)
TELEPHONE INTERFERENCE	 		<2%	,iii <i>)</i>	TIF<50
COOLING AIR		••••	-	0.617 m ³ /sec	
VOLTAGE SERIES STAR			\dashv	600	
VOLTAGE PARALLEL STAR				300	V
VOLTAGE SERIES DELTA				346	V
kVA BASE RATING FOR REACTANCE VALUES				178	.8
Xd DIR. AXIS SYNCHRONOUS				2.0	6
X'd DIR. AXIS TRANSIENT	<u> </u>			0.1	8
X''d DIR. AXIS SUBTRANSIENT				0.1	3
Xq QUAD. AXIS REACTANCE				1.3	4
X"q QUAD. AXIS SUBTRANSIENT				0.1	7
XL LEAKAGE REACTANCE				0.0	7
X2 NEGATIVE SEQUENCE				0.1	4
X ₀ ZERO SEQUENCE				0.0	Ŧ
REACTANCES ARE SATURAT	ED		/ALUES		RATING AND VOLTAGE INDICATED
T'd TRANSIENT TIME CONST.	 			0.03	
T''d SUB-TRANSTIME CONST. T'do O.C. FIELD TIME CONST.	 			0.0	
Ta ARMATURE TIME CONST.	<u> </u>			0.00	
SHORT CIRCUIT RATIO				1/X	

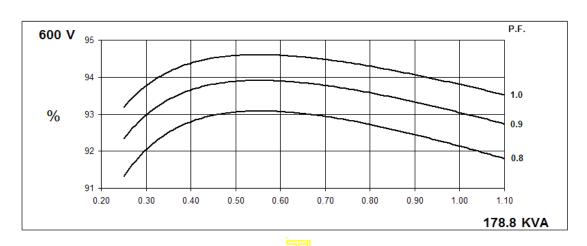


UCI274E

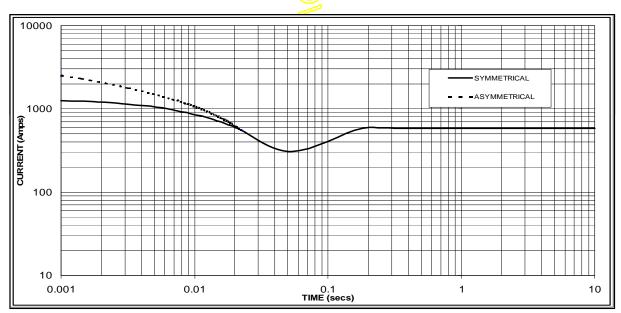

Winding 17

SX

Locked Rotor Motor Starting Curves



MX



UCI274E Winding 17

THREE PHASE EFFICIENCY CURVES

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 580 Amps

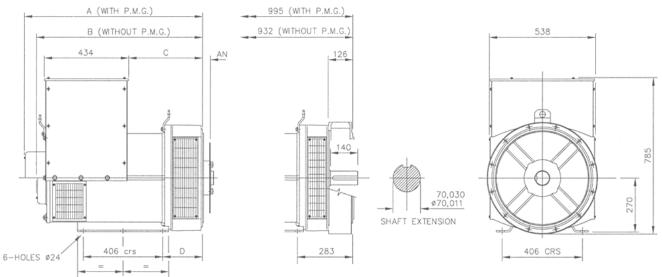
Note

The following multiplication factor should be used to convert the values from curve for the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

UCI274E


Winding 17 / 0.8 Power Factor

60Hz

RATINGS

Class - Temp Rise	Cont. F - 105/40°C	Cont. H - 125/40°C	Standby - 150/40°C	Standby - 163/27°C
Series Star (V)	600	600	600	600
Parallel Star (V)	300	300	300	300
Series Delta (V)	346	346	346	346
kVA	160.0	178.8	187.5	193.8
kW	128.0	143.0	150.0	155.0
Efficiency (%)	92.5	92.1	92.0	91.9
kW Input	138.4	155.2	163.1	168.8

ADAPTOR	A	В	C	D
SAE 1	928,3	865,3	389,3	216,3
SAE 2	914	851	375	202
SAE 3	914	851	375	202

COUPLING	DISCS
DISC	AN
SAE 10	53,98
SAE 11,5	39,68
SAE 14	25,40

APPROVED DOCUMENT

STAMFORD

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom

Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

DGC-2020 Digital Genset Controller

A highly advanced integrated genset control system, this device provides genset control, transfer switch control, metering, protection, and programmable logic in a simple, easy-to-use, reliable, rugged, and cost effective package.

FEATURES

- Generator metering (includes three-phase mains)
- Engine and generator protection: 27, 32R, 40Q, 59, 810/U
- Optional enhanced generator protection: 47, 51, 78, and 81ROCOF
- Load sharing and generator sequencing (via LSM-2020 Load Share Module)
- Var sharing over Ethernet (via LSM-2020)
- BESTCOMSPlus® Software
 - Programming and setup
 - Intuitive and powerful
 - Remote control and monitoring
 - Programmable logic
 - USB communications
- Automatic transfer switch control
- Automatic synchronizer (optional)
- Exercise timer
- SAE J1939 engine ECU communications
- Automatic generator configuration detection
- Expandable functionality via add-on modules
 - LSM-2020 Load Share Module
 - CEM-2020 Contact Expansion Module
 - AEM-2020 Analog Expansion Module
- Multilingual capability
- Remote communications to Basler's RDP-110 (remote display panel)
- Sixteen programmable contact inputs
- Up to 15 contact outputs: 3 contacts rated for 30 Adc and up to 12 programmable contacts rated for 2 Adc

VISIT <u>WWW.BASLER.COM</u> FOR ADDITIONAL INFORMATION.

BENEFITS

- Provides integrated engine-genset control, protection, and metering in a single package.
- The Offline Simulator, provided in BESTlogic™Plus, helps test and troubleshoot logic without the need for expensive hardware.
- Flexible programmable logic and programmable I/O make it easy to expand the DGC-2020's inputs and outputs with the CEM-2020 (Contact Expansion Module) and the AEM-2020 (Analog Expansion Module). This saves time and money by eliminating unnecessary external PLCs and control relaying.

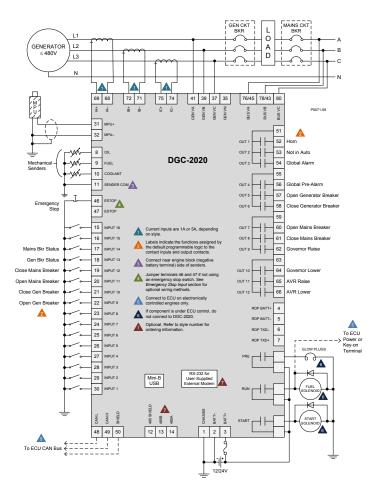


Figure 1 - DGC-2020 Connection Diagram for a Typical Application

Power Supply

Nominal: 12 or 24 Vdc Range: 6 to 32 Vdc Battery Ride Through: Starting at 10 Vdc,

> withstands cranking ride-through down to

0 V for 50 ms

Power Consumption

Sleep Mode: 5 W Normal Operational Mode: 7.9 W Maximum: 14.2 W

Current Sensing

0.02 to 1.0 Aac, continuous 1 A Sensing:

2 Aac for 1 second

5 A Sensing: 0.1 to 5.0 Aac, continuous

10 Aac for 1 second

Burden: 1 VA

Voltage Sensing

Range: 12 to 576 Vrms L-L

Frequency Range: 10 to 72 Hz for 50/60 Hz style,

10 to 480 Hz for 400 Hz style

Burden: 1 V/A One-second Rating: 720 Vrms

Contact Sensing

Contact Inputs (16): Accepts normally open (N.O.),

Dry Contacts, programmable Normally closed (N.C.),

Emergency Stop: Dry Contact

SPECIFICATIONS

Engine Speed Sensing

Magnetic Pickup: Voltage Range: 6 to 70 Vpp Frequency Range: 32 to 10,000 Hz

Generator Frequency:

Generator Voltage Range: 12 to 576 Vrms

Via ECU over J1939

Resistive Senders

0 to 250 Ω nominal Fuel Level Sender: Coolant Temp Sender: 10 to 2.750Ω nominal Oil Pressure Sender: 0 to 250 Ω nominal

Output Contacts

Fuel Solenoid, Engine Crank,

Pre-Start Relays Rating: 30 Adc at 28 Vdc-

make, break, and carry

Programmable Relays: Up to 12

Rating: 2 Adc at 28 Vdc-

make, break, and carry

Protection

Engine:

Generator: 27, 32R, 40Q, 59, 810/U (standard)

47, 51, 78, 81 ROCOF (optional)

Oil pressure, coolant temperature, overcrank, ECU-specific elements,

and diagnostic reporting.

Agency Approvals

CSA certified, NFPA compliant, CE compliant, UL recognized (Hazardous Location certification available upon request), EAC certified

Communication

USB Port: USB 2.0, Mini-B jack

RS-485 (optional): 9600 baud, 8 data bits, no parity RDP-110 (optional): 4,000 ft (1,219 m) max wire

length, 20 AWG (0.52 mm²) min

wire size

Modem (optional): DB-9 connector (male)

CAN bus: 250 kb/s communication rate,

1.5 to 3 Vdc differential bus

Environmental

Operating Temp: -40°C to 70°C (-40°F to 158°F) Storage Temp: -40°C to 85°C (-40°F to 185°F)

Humidity: IEC 68-2-38

Salt Fog: ASTM B 17-73, IEC 68-2-11 Ingress Protection: IEC IP54 for front panel

Shock: 15 G in three perpendicular planes

Vibration:

5 to 29 Hz: 1.5 G peak

0.036" (0.914 mm) double 29 to 52 Hz:

amplitude

52 to 500 Hz: 5 G peak

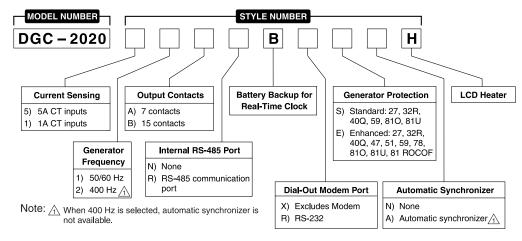
Physical

Weight: 4.4 lb (2 kg)

Dimensions (WxHxD):

11.77 x 8.27 x 2.69 inches (299 x 210 x 69 mm)

For complete specifications, download the instruction manual at www.basler.com.


RELATED PRODUCTS

- BE1-11g Generator Protection System
 - A complete generator protection system.
- **DECS-250 Digital Excitation Control System**
 - Total control in a compact package provides precise voltage, var and power factor regulation, exceptional system response, and generator protection.

Accessories

- AEM-2020 Analog Expansion Module
 - Easily increases the functionality by seamlessly adding analog inputs and outputs.
- CEM-2020, CEM-2020H Contact Expansion Module
 - Each module adds 10 inputs and up to 24 outputs that are easily programmed through BESTCOMSPlus® for easy integration into the system.
- LSM-2020 Load Share Module
 - The simple-to-use LSM-2020 easily adds paralleling capabilities with little effort and expense.
- RDP-110 Remote Display Panel
 - Provides remote alarm and pre-alarm indication and annunciation of system status, easily meeting the annunciation requirements of NFPA-110 applications.

STYLE CHART

Tel +1 618.654.2341

email:info@basler.com

Tmax-Molded Case Circuit Breakers

T3 225A Frame

AC Circuit Breakers and Switches

DC Circuit Breakers and Switches

3 and 4 Pole

Motor Circuit Protectors

Higher Performances in Less Space

Field Installable Accessories

Dimensions 3P Fixed Version 5.9H x 4.13W x 2.76D

Compliance with Standards

UL 489
CSA C22.2 No.5.1
IEC 60947-2
Standards
EC directive:

- "Low Voltage Directives" (LVD) no. 73/23 EEC
- "Electromagnetic Compatibility Directive" (EMC) no.89/336 EEC

The ABB Quality System complies with the international ISO 9001 - 2000 Standard (model for quality assurance in design, development, construction, and installation and service) and with the equivalent European EN ISO 9001 and Italian UNI EN ISO 9001 Standards

Interrupting ratings (RMS sym. kAmps)	Т	3			
Continuous Current Rating	22	225A			
Number of Poles	3-4				
	N	S			
AC					
240V	50	65			
480V	25	35			
600Y / 347V	10	10			
DC					
250V 2 poles in series	25	35			
500V 3 poles in series	25	35			

Company Quality Systems and Environmental Systems

The new Tmax series has a hologram on the front, obtained using special anti-imitation techniques, which guarantees the quality and that the circuit breaker is an original ABB product.

Attention to protection of the environment and to health and safety in the work place is another priority commitment for ABB and, as confirmation of this, the company environmental management system has been certified by RINA in 1997, in conformity with the international ISO 14001 Standard. This certification has been integrated in 1999 with the Management System for Health and Safety in the workplace, according to OHSAS 18001 (British Standards), obtaining one of the first certification of integrated management System, QES (Quality, Environment,

Safety) issued by RINA. ABB - the first industry in the electromechanical section in Italy to obtain this recognition - thanks to a revision of the production process with an eye to ecology has been able to reduce the consumption of raw materials and waste from processing by 20%. ABB's commitment to safeguarding the environment is also shown in a concrete way by the Life Cycle Assessments of its products carried out directly by the ABB Research and Development in collaboration with the ABB Research Center. Selection of materials, processes and packing materials is made optimizing the true environmental impact of the product, also foreseeing the possibility of its being recycled.

Mounting

Fixed Plug-in

Connections

Busbar connection or compression lugs Pressure-type terminals for bare cables Rear connections

Trip Unit

TMF thermo magnetic trip units, with fixed thermal and magnetic threshold ($I3 = 10 \times In$);

Weight (lbs)

5.45

Auxiliary Devices for Indication and Control

- Auxiliary contacts AUX
- Undervoltage release UVR
- Shunt trip SOR
- Terminal covers
- Front for lever operating mechanism FLD
- Direct rotary handle RHD
- Solenoid operator
- Key lock KLF
- Early auxiliary contact AUE

- Transmitted rotary handle RHE
- Front terminal for copper cable FC Cu
- Front extended terminal EF
- Front terminal for copper-aluminum FC CuAl
- Front extended spread terminal ES
- Distribution lugs
- Rear orientated terminal R
- Phase separators
- Residual current release (IEC Only)

ABB Inc.

1206 Hatton Road Wichita Falls, TX 76302 For more information and the location of your local field office please go to www.abb-control.com

Tmax-Molded Case Circuit Breakers

T4 250A Frame

AC Circuit Breakers and Switches

DC Circuit Breakers and Switches

3 and 4 Pole

Motor Circuit Protectors

Higher Performances in Less Space

Field Installable Accessories and Trip Units

Dimensions 3P Fixed Version 8.07H x 4.13W x 4.07D

Compliance with Standards

UL 489
CSA C22.2 No.5.1
IEC 60947-2
Standards
EC directive:

- "Low Voltage Directives" (LVD) no. 73/23 EEC
- "Electromagnetic Compatibility Directive" (EMC) no.89/336 EEC

The ABB Quality System complies with the international ISO 9001 - 2000 Standard (model for quality assurance in design, development, construction, and installation and service) and with the equivalent European EN ISO 9001 and Italian UNI EN ISO 9001 Standards

Interrupting ratings (RMS sym. kAmps)			T4		
Continuous Current Rating			250A		
Number of Poles			3-4		
	N	S	Н	L	٧
AC					
240V	65	100	150	200	200
480V	25	35	65	100	150
600V	18	25	35	65	100
DC*					
500V 2 poles in series	25	35	50	65	100
600V 3 poles in series	16	25	35	50	65

^{*}Thermo Magnetic Trip Only

Company Quality Systems and Environmental Systems

The new Tmax series has a hologram on the front, obtained using special anti-imitation techniques, which guarantees the quality and that the circuit breaker is an original ABB product.

Attention to protection of the environment and to health and safety in the work place is another priority commitment for ABB and, as confirmation of this, the company environmental management system has been certified by RINA in 1997, in conformity with the international ISO 14001 Standard. This certification has been integrated in 1999 with the Management System for Health and Safety in the workplace, according to OHSAS 18001 (British Standards), obtaining one of the first certification of integrated management System, QES (Quality, Environment,

Safety) issued by RINA. ABB - the first industry in the electromechanical section in Italy to obtain this recognition - thanks to a revision of the production process with an eye to ecology has been able to reduce the consumption of raw materials and waste from processing by 20%. ABB's commitment to safeguarding the environment is also shown in a concrete way by the Life Cycle Assessments of its products carried out directly by the ABB Research and Development in collaboration with the ABB Research Center. Selection of materials, processes and packing materials is made optimizing the true environmental impact of the product, also foreseeing the possibility of its being recycled.

Mounting

Fixed Plug-in Drawout

Connections

Busbar connection or compression lugs Pressure-type terminals for bare cables Rear connections

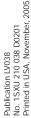
Trip Unit

TMF thermo magnetic trip units, with fixed thermal and magnetic threshold ($I3 = 10 \times In$);

TMD (up to 50 A) thermo magnetic trip units with adjustable thermal threshold (I1 = 0.7...1 x In) and fixed magnetic threshold (I3 = 10 x In).

TMA thermo magnetic trip units, with adjustable thermal threshold (I1 = 0.7...1 x In) and adjustable magnetic threshold (I3 = 5...10 x In).

PR221DS, PR222DS/P and PR222DS/PD-A electronic trip unit


Weight (lbs)

6.18

Auxiliary Devices for Indication and Control

- Auxiliary contacts AUX
- Undervoltage release UVR
- Shunt trip SOR
- Terminal covers
- Front for lever operating mechanism FLD
- Direct rotary handle RHD
- Stored energy motor operator MOE
- Key lock KLF
- Early auxiliary contact AUE

- Transmitted rotary handle RHE
- Front terminal for copper cable FC Cu
- Front extended terminal EF
- Front terminal for copper-aluminum FC CuAl
- Front extended spread terminal ES
- Distribution lugs
- Rear orientated terminal R
- Phase separators
- Residual current release (IEC Only)

ABB Inc.

1206 Hatton Road Wichita Falls, TX 76302 For more information and the location of your local field office please go to www.abb-control.com

Tmax-Molded Case Circuit Breakers

T5 400A and 600A Frame

AC Circuit Breakers and Switches

DC Circuit Breakers and Switches (400A Only)

3 and 4 Pole

Motor Circuit Protectors

Higher Performances in Less Space

Field Installable Accessories and Trip Units

Dimensions 3P Fixed Version 8.07H x 5.51W x 4.07D

Compliance with Standards

UL 489
CSA C22.2 No.5.1
IEC 60947-2
Standards
EC directive:

- "Low Voltage Directives" (LVD) no. 73/23 EEC
- "Electromagnetic Compatibility Directive" (EMC) no.89/336 EEC

The ABB Quality System complies with the international ISO 9001 - 2000 Standard (model for quality assurance in design, development, construction, and installation and service) and with the equivalent European EN ISO 9001 and Italian UNI EN ISO 9001 Standards

Interrupting ratings (RMS sym. kAmps)	T5					
Continuous Current Rating	400-600A					
Number of Poles			3-4			
	N	S	Н	L	٧	
AC						
240V	65	100	150	200	200	
480V	25	35	65	100	150	
600V	18	25	35	65	100	
DC* (400 A only)						
500V 2 poles in series	25	35	50	65	100	
600V 3 poles in series	16	25	35	50	65	

^{*}Thermo Magnetic Trip Only

Company Quality Systems and Environmental Systems

The new Tmax series has a hologram on the front, obtained using special anti-imitation techniques, which guarantees the quality and that the circuit breaker is an original ABB product.

Attention to protection of the environment and to health and safety in the work place is another priority commitment for ABB and, as confirmation of this, the company environmental management system has been certified by RINA in 1997, in conformity with the international ISO 14001 Standard. This certification has been integrated in 1999 with the Management System for Health and Safety in the workplace, according to OHSAS 18001 (British Standards), obtaining one of the first certification of integrated management System, QES (Quality, Environment,

Safety) issued by RINA. ABB - the first industry in the electromechanical section in Italy to obtain this recognition - thanks to a revision of the production process with an eye to ecology has been able to reduce the consumption of raw materials and waste from processing by 20%. ABB's commitment to safeguarding the environment is also shown in a concrete way by the Life Cycle Assessments of its products carried out directly by the ABB Research and Development in collaboration with the ABB Research Center. Selection of materials, processes and packing materials is made optimizing the true environmental impact of the product, also foreseeing the possibility of its being recycled.

Mounting

Fixed Plug-in Drawout

Connections

Busbar connection or compression lugs Pressure-type terminals for bare cables Rear connections

Trip Unit

TMA thermo magnetic trip units, with adjustable thermal threshold (I1 = $0.7...1 \times In$) and adjustable magnetic threshold (I3 = $5...10 \times In$).

PR221DS, PR222DS/P and PR222DS/PD-A electronic trip unit

Weight (lbs)

8.55

Auxiliary Devices for Indication and Control

- Auxiliary contacts AUX
- Undervoltage release UVR
- Shunt trip SOR
- Terminal covers
- · Front for lever operating mechanism FLD
- Direct rotary handle RHD
- Stored energy motor operator MOE
- Key lock KLF
- · Early auxiliary contact AUE

- Transmitted rotary handle RHE
- Front terminal for copper cable FC Cu
- · Front extended terminal EF
- Front terminal for copper-aluminum FC CuAl
- Front extended spread terminal ES
- Distribution lugs
- · Rear orientated terminal R
- Phase separators
- Residual current release (IEC Only)

ABB Inc.

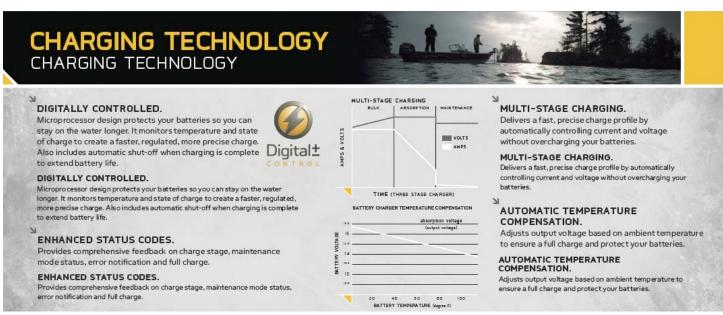
1206 Hatton Road Wichita Falls, TX 76302 For more information and the location of your local field office please go to www.abb-control.com

Digital Linear Chargers

Specifications

- Waterproof, shock-and vibration-resistant aluminum construction
- Saltwater tested and fully corrosion-resistant
- · Short circuit, reverse polarity, and ignition protected
- For use with 12V/6 cell batteries that are flooded/wet cell, maintenance free or starved electrolyte (AGM) only
- FCC compliant
- UL listed to marine standard 1236
- 3 year warranty
- Replaces all existing current on-board chargers (excluding portables)
- No Price Increase
- Availability: November 2010

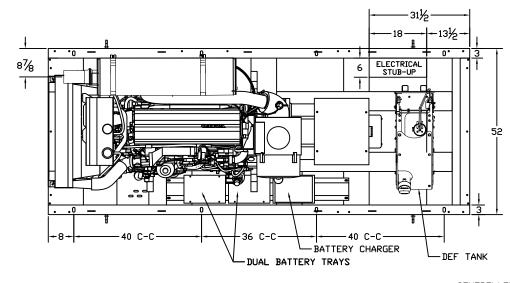
DIGITAL LINEAR ON-BOARD CHARGERS				
PRODUCT	PRODUCT			
CODE	DESCRIPTION			
1821065	MK 106D (1 bank x 6 amps)			
1821105	MK-110D (1 bank x 10 amps)			
1822105	MK-210D (2 bank x 5 amps)			
1823155	MK-315D (3 bank x 5 amps)			
1822205	MK-220D (2 bank x 10 amps)			
1823305	MK-330D (3 bank x 10 amps)			
1824405	MK-440D (4 bank x 10 amps)			
1822305	MK-230D (2 bank x 15 amps)			
1823455	MK-345D (3 bank x 15 amps)			
1824605	MK-460D (4 bank x 15 amps)			

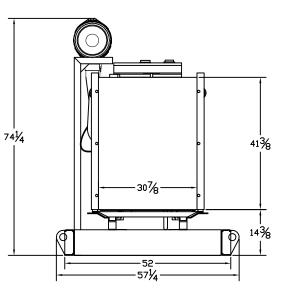


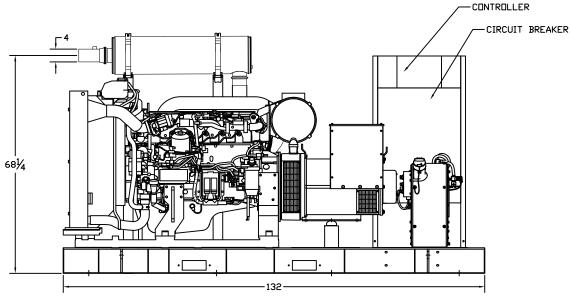
Digital Linear Chargers

Specifications (cont.)

New 4-color package design

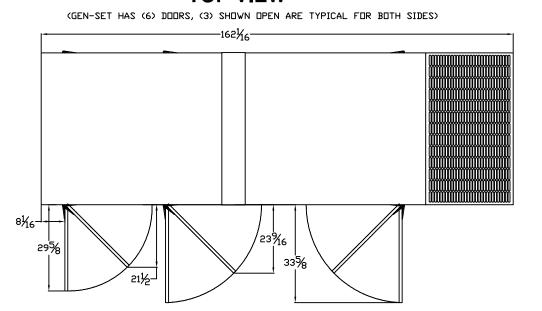




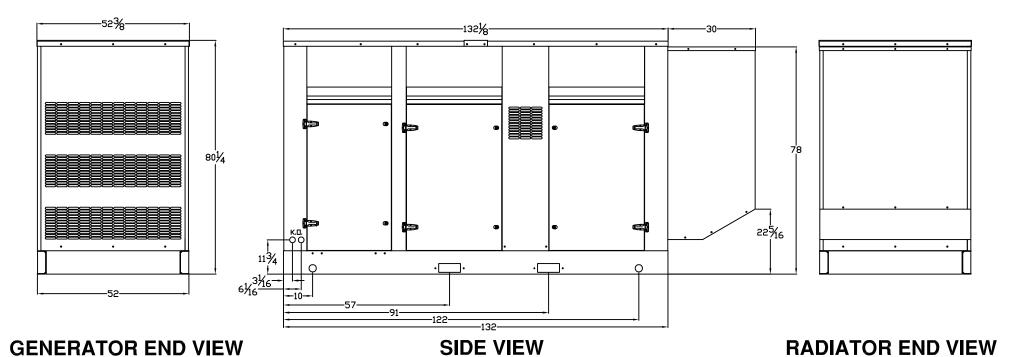

OUTLINE DIMENSIONS FOR T4D-1000 OPEN

TOP VIEW

RADIATOR END VIEW


RIGHT SIDE VIEW


OUTLINE DIMENSIONS FOR T4D 100 - 200 KW LEVEL 2 ENCLOSURE (HINGED DOORS)


TOP VIEW

T4D-1000-2000-L2-GENERATOR-SET-HINGES-DVERVIEW-20190119

FRAME VIEW

