

ENGINEERING STRUCTURAL CALCULATIONS For Gillette 110" Frame Gensets

March 12, 2025

110" Frame Genset Models:

SP-1500	SPD-1500
SPJD-1550	SPD-2000
SPJD-2100	

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures 2020 Aluminum Association Design Manual ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (6) per side (12) total

This item has been digitally signed and sealed by Matthew T. Baldwin, P.E. on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Project Information

Project Name/Model

- (Gillette	110"	Frame	Gensets
-----	----------	------	-------	---------

- Project Number Project Description Project Location Customer Mounting Location
- Sound Attenuated Generator Enclosure
- Florida
- Ground

Enclosure Materials

- Roof Beam Roof Panels Wall Panels Base Frame/Skid
- 14 Gage Truss CRS
- 0.080 Aluminum Panel 5052-H34
- 0.080 Aluminum Panel 5052-H34
- Aluminum Formed Steel 'C' Channel

Components

Base

GenSet Manufacturer

GenSet Size and Model

- Gillette
- SP-1500,SPJD-1550,SPJD-2100,SPD-1500,SPD-2000 Supported by Base
- Aluminum Formed Steel 'C' Channel

Fasteners/Hardware

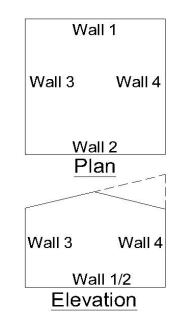
		Bolt Size		Washer	Nut	Grade/Finish
Roof to Walls-Wall to Wall-Walls toBaseBase to Slab/Tank-	• :	5/16" - 18 Bolts 5/16" - 18 Bolts 5/16" - 18 Bolts " Set Bolt Ancho	ors	5/16" Washer 5/16" Washer 5/16" Washer Flat Washers	Nut Clip Nut Clip Nut Clip Hex Nuts	Grade 18-8/SS Grade 18-8/SS Grade 18-8/SS Grade 5/Galv.
Specification Requiremen	ts					T. BALO
Wind Speed - Exposure Category -	200 D	mph				
Risk Category - Ground Snow Load (<i>P</i> _g Fig 7.1) - Ice Thickness (<i>t</i> Fig 10-2 to10-6) -		psf in				
and Concurrent Wind Gust (V_c) - Seismic Site Class		mph	ago 1			v T. Baldwin, P.E. a License #64608

Enclosure Dimensions & Component Weights

Gillette 110" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)


<u>Wall</u>	Length (ft)		<u>Height (ft)</u>
1	4.02	х	5.36
2	4.02	х	5.36
3	12.18	х	5.36
4	12.18	х	5.36

Base Dimensions

Width (Wall 1/2 Side)	=	48	in
Length (Wall 3/4 Side)	=	110	in
Height	=	7	in

Roof/Eave Information

Roof Pitch Angle -	<i>(θ)</i> =	0.0	Degrees
Eave/Roof Height -	h =	5.943	

Structure Areas

Walls 1/2 Area Walls 3/4 Area Roof Area	-	(w3) =		$ft^2 =$	10,424	in ²
Base Side 1/2 Base Side 3/4		(T1) = (T3) =	336.0 770.0			

Component Weights (lightest setup for worst case)

onservative/most uplift to resist)
erative/most uplift to resist)
e

STATE OF ΟΝΑ Matthew T. Baldwin, P.E.

MWFRS Net Pressures

Gillette 110" Frame Gensets

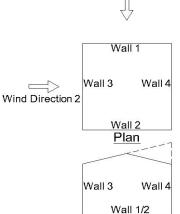
Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

Enclosure Classification	-	Enclosed	ł
Exposure Category	-	D	
Basic Wind Speed	(V)	200	mph
Importance Factor (Wind)	(1 _w)	1.15	
Wind Directionality Factors	(K _d)	0.85	
Internal Pressure Coefficients	(GC _{pi})	± 0.18	
Velocity Pressure Exposure Coefficient	(K _z)	1.03	
Roof Mean Height Above Ground Level	(Z)	6.53	ft
Velocity Pressure	(q)	103.12	psf

Wind Direction 1

		Enclosure								
		Wall #			Roof					
		1 0	2	294	2 3&4		Par	allel to Ridg	е	
		I	2	584	$(C_p)1$ (Distance From Windward Edge)				(C _p)2	
		Windward	Leeward	Side	0 to 3.0	3.0 to 5.9	5.9 to 11.9	> 11.9	(<i>Op</i>)2	
Background Response Factor	(Q)	0.97	0.97	0.96	0.97					
Gust Effect Factors	(G)	0.91	0.91	0.91	0.91					
External Pressure Coefficients	(C _p)	0.80	-0.249	-0.70	-0.90	-0.90	-0.50	-0.3	-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.7	-42.0	-84.1	-103.3	-103.3	-65.6	-46.8	-35.5	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.9	-4.8	-46.9	-66.1	-66.1	-28.5	-9.7	1.6	


Wind Direction 2

		Enclosure										
		Wall #			Roof - Normal To Ridge							
		3 4		4 180		4 1&2						
		5	Ŧ	102	(C _p)1	(Distance From Windward Edge)		d Edge)	(C _p)2			
		Windward	Leeward	d Side	0 to 3.0	> 3.0			$(O_p)^2$			
Background Response Factor	(Q)	0.96	0.96	0.97	0.96							
Gust Effect Factors	(G)	0.91	0.91	0.91	0.91							
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18			
Net Pressures with $+ (GC_{pi})$ - psf	(Net _{p+})	56.3	-65.3	-84.4	-115.9	-84.1			-35.4			
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.4	-28.2	-47.3	-78.8	-46.9			1.7			

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

CENSE ROARSSIONAL WT.Ba

Matthew T. Baldwin, P.E. Florida License #64608

Elevation

Wind Direction 1

Page 3 - 1

<u>Snow</u>

Importance Factor (Snow) Exposure Factor Thermal Factor Slope Factor	(I _s) (C _e) (C _t) (C _s)	1.1 0.8 1.2 1.0		
Flat Roof Snow Load	(p _s)	0	psf	
<u>Seismic</u>				
Importance Factor (Seismic)	(1 _{sm})	1.25		
Mapped Acceleration Parameter	(S_s)	0.14	Figures	22-1 Thru 22-14
Mapped Acceleration Parameter	(S_1)	0.07	-	22-1 Thru 22-14
Site Coefficient	(F _a)	1	-	
Site Coefficient	(F_v)	1		
MCE Spectral Resp. Accel. Short Per.	(S _{MS})	0.140		
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07		
Design Spectral Accel. Short Period	(S_{DS})	0.093		
Design Spectral Accel. 1-s Period	(S _{D1})	0.04667		
Fundamental Period of Structure	(T _a)	0.070	sec	
Long Period Transistion Period	(T_L)	8	sec	Figure 22-15 Thr
Seismic Design Category	-	Α		

	(• a)			
Long Period Transistion Period	(T_L)	8	sec	Figure 22-15 Thru 22-20
Seismic Design Category	-	Α		
Total Effective Seismic Weight	(W_{eff})	923	lbs	
Response Modification Coeficient	(R)	2	Table	12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table	12.2-1
Deflection Amplification Factor	(C _d)	2	Table	12.2-1
Seismic Response Coefficient	(C _s)	0.058		

Resultant Seismic Forces

Horizontal Seismic Load Effect	-	(E _h)	
Force at Base of Base	=	0.0	kips
Force at Top of Base	=	0.0	kips
Force at Top/Bottom of Enclosure	=	0.002	kips
Force on Silencer	=	0	kips
Vertical Seismic Load Effect (E_v)	=	0	(Factor, Used With Deadweight

(Factor, Used With Deadweight in Load Combinations) 0

Structural Calculations - Roof

Gillette 110" Frame Gensets

0.000

psi

Critical Loads & Pressures

Wind Pressures

Downforce	1.719	psf	=	0.01 µ	psi
Uplift	-115.9	psf	=	-0.80	psi

Snow Pressure psf =

0

Seismic Load

Horizontal Vertical Factor

2 lbs 0

=

=

Roof Live Load

Downforce 20.0 psf 0.1389 = psi or 300 lbs Concentrated Load Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

14 Gage Truss - CRS

Cross Sectional Area Moment of Inertia - x Moment of Inertia - y Section Modulus - x Section Modulus - y Radius of Gyration - x Radius of Gyration - y	$(A) (I_x) (I_y) (S_x) (S_y) (r_x) (r_y)$	= = =	0.48 0.620 N/A 0.640 N/A 1.130 N/A	in ⁴ in ⁴ in ³ in ³		
Weight Modulus of Elasticity Safety Factor Plastic Section Mod x Plastic Section Mod y Tensile Ultimate Strength Tensile Yield Strength Compressive Yield Stren Shear Ultimate Strength			0.120 2.90E 1.9 0.1 (<i>F_{tu}</i>) (<i>F_{ty}</i>) (<i>F_{cy}</i>) (<i>F_{cy}</i>)	+04 5 8 8 = =	ksi 58 36 22	ksi

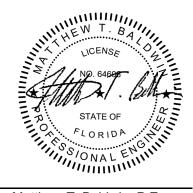
Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length	(L _i)	=	47.8	in
Load Spanned Width	(W _i)	=	54.9	in

Interior Beam Calculated Forces


Distributed Loads

Weight of Beam	(<i>w</i>)	=	0.090	lbs/in
Wind Load Downforce	(W _d)	=	0.502	lbs/in
Wind Load Uplift Force	(w _u)	=	-34.230	lbs/in

Shear Forces (Maximum at End)

Beam Weight Shear Wind DownForce Shear Wind Uplift Shear	$(V_{wd}) =$		lbs lbs lbs
Total Shear Downward Total Shear Upward	= =	11.5 662.5	lbs lbs
<u>Design Shear</u>	$(V_{bi}) =$	<u>662.5</u>	lbs
Stress Forces (Bending)			
Beam Weight Moment Wind Downforce Moment Wind Uplift Moment	$(M_b) = (M_d) = (M_u) =$		lb∙in Ib∙in Ib∙in
Total Moments Downwa Total Moments Upward		59 3,211	lb∙in Ib∙in
Design Moment	$(M_T) =$	3,211	lb∙in
<u>Design Stress</u>	$(\sigma_{bi}) =$	<u>8,921</u>	psi
Interior Beam Design C	alculatio	<u>ns</u>	
Allowable Shear Strength			
Slenderness Limit 1 Slenderness Limit 2 Slenderness Ratio		-20.08 102.40 18.0	
Allowable Shear Stress Allowable Shear Strength			psi Ibs
<u>Conclusion</u>			
(V _{bi}) 663 lbs	$< (V_n)$	3,548	lbs <u>OK</u>
Allowable Stresses For Tensi	ion And Cor	npression (E	Bending)
<u>Tension</u>			
Allowable Tensile Stress		$(F_t) =$	16,000 psi
<u>Compression</u>			
	$(S_1) = (S_2) = (S) =$	125.0	
Allowable Compressive Str	ess	$(F_c) =$	13,121 psi
The <u>All</u>	owable C	ompressiv	e Stress is the controlling
Therefore,	(F _b) =	<u>13,121</u>	psi failure design
<u>Conclusion</u>			
$(\sigma_{\it bi})$ 8,921 psi	< (F _b)	13,121	psi <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift (R) 7,051 in² (not including discharge hood area) =

Roof Uplift Calculated Forces

Roof Weight Wind Load Uplift Force	(@a) (W _{ru})	= =	102 -5,674	lbs Ibs					
Total Roof Design Uplift	(W _{ru})	=	<u>-5,572</u>	lbs					
Mounting Hardware - Roof Fra	ame to V	Vall	Panels						
Screws Along Length - 1 Screws Along Width - 1 S		=	6 3		" - 18 Bol " - 18 Bol				
Total Mounting Screws		=	18	5/16	" - 18 Bol	ts			
Entire Roof Uplift Desig	n Cal	cula	ations						
Grade 18-8/SS Ult. Stren 5/16" Bolt Nominal Diame 5/16" Bolt Effective Area 5/16" Bolt Threads per In Washer Nominal Diamete Wall Panel Tensile Ult. Stre Wall Panel Tensile Yield Str Safety Factor Wall Panel Nominal Thickne Maximum Tensile Streng Maximum Shear/Bearing St	eter ch er ngth rength ess th rength		$150,000 \\ 0.255 \\ 0.051 \\ 18 \\ 0.875 \\ 34 \\ 26 \\ 3 \\ 0.0620 \\ 439.2 \\ 408.6$	psi in in ² in ksi ksi in Ibs Ibs					
Max. Tensile Load per Bo	olt	=	408.6	lbs					
Max. Total Screws Tensile S	Strengt	<u>h</u>	$(P_{ts}) =$	<u>7,354</u>	<u>lbs</u>				
$\frac{\text{Conclusion}}{(W_{ru})} \qquad 5,572$	lbs	<	(P _{ts})	7,354	lbs	<u>ок</u>			
Roof Panel Uplift Ca	alcula	atic	<u>ons</u>						
Roof Panel Critical Men	nber D	im	<u>ensions</u>						
Critical Panel Length Critical Panel Width			54.90 in 48.00 in						
Roof Panel Uplift Calcu	lated	For	<u>ces</u>						
Distributed Loads									
Wind Load Uplift Force	Wind Load Uplift Force (w _{pu}) = <u>2,120.6</u> lbs								
Mounting Hardware - Roof Pa	nel to R	oof	Frame						
Screws Along Length - 1	Side	=	3	5/16	" - 18 Bol	ts			

Grade 18-8/SS Ult. Strength	=	150,000	psi	
5/16" Bolt Nominal Diameter	=	0.255	in	
5/16" Bolt Effective Area	=	0.051	in ²	
5/16" Bolt Threads per Inch	=	18		
Washer Nominal Diameter	=	0.875	in	
Wall Panel Tensile Ult. Strength	=	34	ksi	
Wall Panel Tensile Yield Strength	=	26	ksi	
Safety Factor	=	3		
Wall Panel Nominal Thickness	=	0.0620	in	
Maximum Tensile Strength	=	439.2	lbs	
Maximum Shear/Bearing Strength	=	408.6	lbs	
Max. Tensile Load per Bolt	=	408.6	lbs	
Max. Total Screws Tensile Strength	h	$(P_{ts}) =$	<u>7,354</u>	<u> </u>
Conclusion				
(W _{ru}) 5,572 lbs	<	(P_{ts})	7,354	II

Screws Along Length - 1 Side	=	3	5/16" - 18 Bolts	- Grade 18-8/SS
Screws Along Width - 1 Side	=	3	5/16" - 18 Bolts	- Grade 18-8/SS

Roof Panel Uplift Design Calculations

Grade 18-8/SS Ult. Strength 5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch	= = =	150,000 0.255 0.051 18	psi in in ²					
Washer Nominal Diameter	=	0.875	in					
Roof Panel Tensile Ult. Strength	=	34	ksi					
Roof Panel Tensile Yield Strength	=	26	ksi					
Safety Factor	=	3						
Roof Panel Nominal Thickness	=	0.0800	in					
		Roof Frame	è		(Accounts for screw			
Maximum Tensile Strength	=	439.2			pull-over and pull-out strengths)			
Maximum Shear/Bearing Strength	=	408.6			suchguisj			
Max. Tensile Load per Screw	=	408.6						
<u>Max. Total Screws Tensile Strength</u> (P_{ts}) = <u>4,903</u> <u>lbs</u>								
Conclusion								
(w _{pu}) 2,121 lbs < (P	_{ts})	4,903	lbs <u>C</u>	<u> </u>				

Structural Calculations - Wall Panel

Gillette 110" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward	93.9	psf	=	0.6518	psi
Away	-84.4	psf	=	-0.5864	psi

Walls 3 & 4

Maximum Pressures Acting:

Toward	93.4	psf	=	0.6488	psi
Away	-84.1	psf	=	-0.5838	psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

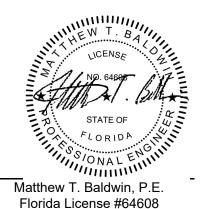
Maximum Downforce	$(W_d) =$	1,081	lbs
Wind Load Uplift Force	$(W_{pu}) =$	2,121	lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width	=	45.50	in
Critical/Maximum Panel Height	=	64.00	in

Section Properties


0.080 Aluminum Panel - 5052-H34

Cross Sectional Area	(A)	=	3.79	in ²		
Moment of Inertia - x	(I_x)		0.052			
Moment of Inertia - y	(1 _y)	=	N/A	in⁴		
Section Modulus - x	(S _x)	=	0.802	in ³		
Section Modulus - y	(S _y)	=	N/A	in ³		
Radius of Gyration - x	(r _x)	=	0.112	in		
Radius of Gyration - y	(r _y)	=	N/a	in		
Weight	(<i>w</i>)	=	0.026	lbs/	in ²	
Modulus of Elasticity	(E)	=	1.02E	+04	ksi	
Safety Factor	(Ω)	=	1.6	7		
Plastic Section Mod x	(Z_x)	=	0.1	3		
Plastic Section Mod y	(Z_y)	=	0.1	3		
Tensile Ultimate Strength	้า		(F _{tu})	=	34	ksi
Tensile Yield Strength		(F_{ty})	=	26	ksi	
Compressive Yield Stren		(F_{cy})	=	24	ksi	
Shear Ultimate Strength		(F _{su})	=	20	ksi	
Wall Papel Calculat	ione					

Wall Panel Calculations

Critical Wall Area

Area of Wall Panel		(W)	=	2,912.0 in ²
Mounting Hardware - Roof Frame to				
Screws Along Height - 1 Side Screws Along Width - 1 Side	= =	4 8		5/16" - 18 Bolts 5/16" - 18 Bolts
Total Mounting Screws	=	24		5/16" - 18 Bolts

Page 5 - 1

Grade 5 Ultimate Strength 5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch	= = =	150,000 0.255 0.051 18	psi in in ²	
Washer Nominal Diameter	=	0.875	in	
Roof Panel Tensile Ult. Strength	=	34	ksi	
Roof Panel Tensile Yield Strength	=	26	ksi	
Safety Factor	=	3		
Roof Panel Nominal Thickness	=	0.0800	in	
		Roof Frame	•	
Maximum Tensile Strength	=	388.7		(Accounts for screw pull-over and pull-out strengths)
Maximum Shear/Bearing Strength	=	300.0		
Max. Tensile Load per Bolt	=	300.0		
Max. Total Screws Tensile Strengt	<u>h</u>	$(P_{ts}) =$	<u>6,391</u>	lbs
Conclusion				

 (w_{pu}) 1,898 lbs < (P_{ts}) 6,391 lbs <u>OK</u>

Structural Calculations - Enclosure to Base

Gillette 110" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	98.7	psf =	0.6853	psi
Wall 3 or 4 -	84.1	psf =	0.5838	psi
Roof Uplift -	103.3	psf =	0.7172	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	98.7	psf =	0.6853	psi
Wall 3 or 4 -	46.9	psf =	0.3260	psi
Roof Uplift -	66.1	psf =	0.4594	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	121.6	psf =	0.8448	psi
Wall 1 or 2 -	84.4	psf =	0.5864	psi
Roof Uplift -	115.9	psf =	0.8047	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4	-	121.6	psf =	0.8448	psi
Wall 1 or 2	-	47.3	psf =	0.3286	psi
Roof Uplift	-	78.8	psf =	0.5469	psi

<u>Seismic</u>

Horizontal Seismic Force $(E_h) = 2$ lbs

Enclosure Critical Dimensions & Weights

Total Enclosure	Weight	(W_t)	=	225	lbs
Walls 1/2 Area	-	(w1)	=	3440.5	in ²
Walls 3/4 Area	-	(w3)	=	10424.1	in ²
Roof Area	-	(R)	=	7050.8	in ²

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -		=	2,358	lbs
Wall 3 or 4	-	=	6,085	lbs
Roof Uplift	-	=	5,057	lbs

NO. 64660 R STATE OF FLORIDA

Matthew T. Baldwin, P.E. Florida License #64608

(Includes all components)

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2	-	=	2,358	lbs
Wall 3 or 4	-	=	3,398	lbs
Roof Uplift	-	=	3,239	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	8,806	lbs
Wall 1 or 2 -	=	2,018	lbs
Roof Uplift -	=	5,674	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	8,806	lbs
Wall 1 or 2 -	=	1,131	lbs
Roof Uplift -	=	3,856	lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	2,991	lbs			
Overturn on Walls 3/4		6,914				
Net Forces with - Internal Pre	ssure(-	Gcpi)				
Overturn on Walls 1/2	=	2,082	lbs			
Overturn on Walls 3/4	=	4,019	lbs			
Wind Direction 2						
Net Forces with + Internal Pre	essure([.]	+Gcpi)				
Overturn on Walls 3/4	=	9,234	lbs			
Overturn on Walls 1/2	=	3,217	lbs			
Net Forces with - Internal Pre	ssure <i>(-</i>	Gcpi)				
Overturn on Walls 3/4	=	8,325	lbs			
Overturn on Walls 1/2	=	2,091	lbs			
Design Overturn Force	(0 _E)	= <u>9</u>	<u>,234</u>	lbs	Acting On Wall 3/4	
Mounting Hardware - Enclosu	ire to B	ase/Tanl	<u>k or Pad</u>			
To be conservative, bolt conr		-	-		-	
No. of Bolt Connections	Along	Wall 3	3/4 =	7	5/16" - 18 Bolts - Gra	Э
Enclosure Overturn De	sign (Calcula	<u>itions</u>			
Grade 18-8 Ultimate Stre	ength	= 15	0,000	psi		
Grade 8.8 Nom. Tensile	-			•	(Includes Reduction Factor)	
5/16" Bolt Effective Area		= 0	.051	in²		

2,873

lbs

= 20,109 lbs

=

Grade 18-8/S CENSE STATE OF G EN ONAL 1111111N

> Matthew T. Baldwin, P.E. Florida License #64608

(0_E) 9,234 lbs < (R_v) 20,109 lbs

Tensile Strength per Bolt

Conclusion

Total Bolts Tensile Strength

Page 6 - 2

OK

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 110" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	98.7	psf =	0.6853	psi
Wall 3 or 4 -	84.1	psf =	0.5838	psi
Roof Uplift -	103.3	psf =	0.7172	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	98.7	psf =	0.6853	psi
Wall 3 or 4 -	46.9	psf =	0.3260	psi
Roof Uplift -	66.1	psf =	0.4594	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	121.6	psf =	0.8448	psi
Wall 1 or 2 -	84.4	psf =	0.5864	psi
Roof Uplift -	115.9	psf =	0.8047	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	121.6	psf =	0.8448	psi
Wall 1 or 2 -	47.3	psf =	0.3286	psi
Roof Uplift -	78.8	psf =	0.5469	psi

<u>Seismic</u>

Enclosure Horiz. Seismic Force $(EE_h) = 2$ Ibs Base/Tank Horiz. Seismic Force $(EB_h) = 9$ Ibs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight				
Walls 1/2 Area -				(Includes Base/Tank Surface Area)
Walls 3/4 Area -	(w3) =	11,194	in ²	(Includes Base/Tank Surface Area)
Roof Area -	(R) =	7,051	in ²	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	2,588	lbs
Wall 3 or 4 -	=	6,535	lbs
Roof Uplift -	=	5,057	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2 -	=	2,588	lbs
Wall 3 or 4 -	=	3,649	lbs
Roof Uplift -	=	3.239	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	9,456	lbs
Wall 1 or 2 -	=	2,215	lbs
Roof Uplift -	=	5,674	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	9,456	lbs
Wall 1 or 2 -	=	1,241	lbs
Roof Uplift -	=	3,856	lbs

Enclosure with Base/Tank Maximum Wind Force	=	9,456	lbs Acting On Wall 3/4
Coefficient of Friction - Steel to Wet Concrete (μ_s) Frictional Resisting Force (Total Weight x $\mu_s)$	= =	0.45 180	
Enclosure with Base/Tank Design Shear (V _{EB})	=	<u>9,276</u>	

Enclosure With Base/Tank Overturn Forces (Inlcudes Seismic)

Postive forces act upward

Wind Direction 1

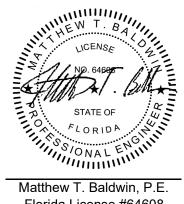
Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	3,023	lbs
Overturn on Walls 3/4	=	7,638	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 1/2	=	2,115	lbs
Overturn on Walls 3/4	=	4,387	lbs

Wind Direction 2


Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	10,318	lbs
Overturn on Walls 1/2	=	3,232	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 3/4	=	9,410	lbs
Overturn on Walls 1/2	=	2,062	lbs

 $(O_{EB}) = 10,318$ lbs Acting On Wall 3/4 Design Overturn Force

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4	=	6	Bolts	1/2" Set Bolt Anchors	- Grade 5/Galv.
--	---	---	-------	-----------------------	-----------------

Enclosure With Base/Tank Design Calculations

 (O_{EB}) 10,318 lbs < (R_{tb}) 10,685 lbs

Mounting Hardware - Shear and Tension

Grade 5 No	n per Bolt th per Bolt		120,000 48,000 90,000 0.159 3,816 7,155 1,781	psi psi in ² Ibs Ibs	ned Tension and Shear)
Total Bolts She Total Bolts Ten	•		$(R_{vb}) =$ $(R_{tb}) =$		lbs lbs
Conclusion					
Shear					
(V _{EB}) 9,2	276 lbs < (R	_{tb})	22,896	lbs	<u>OK</u>
Tension					

Matthew T. Baldwin, P.E. Florida License #64608

<u>0K</u>