

ENGINEERING STRUCTURAL CALCULATIONS For Gillette 68" Frame Gensets

March 12, 2025

Models SP-250, SPD-300

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures 2020 Aluminum Association Design Manual ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (2) per side (4) total

This item has been digitally signed and sealed by Matthew T. Baldwin, P.E. on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Project Information

Project Name/Model

- Gillette 68" Frame Gensets
- **Project Number Project Description Project Location** Customer Mounting Location
- Sound Attenuated Generator Enclosure
- Florida
- Ground

Enclosure Materials

- **Roof Panels** Wall Panels Base Frame/Skid
- 0.080 Aluminum Panel 5052-H34
- 0.060 Aluminum Panel 5052-H34
- Aluminum Formed Steel 'C' Channel

Components

GenSet Manufacturer GenSet Size and Model Base

- Gillette
- SP-250, SPD-300
- Aluminum Formed Steel 'C' Channel
- Supported by -Base

Fasteners/Hardware

			Bolt Size	Washer	Nut	Grade/Finish
Roof to Walls Wall to Wall Walls to Base Base to Slab/Tank	- - -	5 5 5 1/2"	/16" - 18 Bolts /16" - 18 Bolts /16" - 18 Bolts Set Bolt Anchors	5/16" Washer 5/16" Washer 5/16" Washer Flat Washers	Nut Clip Nut Clip Nut Clip Hex Nuts	Grade 18-8/SS Grade 18-8/SS Grade 18-8/SS Grade 5/Galv.
Specification Require	ments				THE WILL	N. T. B. A. L. D. CENSE P. 64600
Wind Speed Exposure Category	-	200 D	mph		ST PROS	
Risk Category Ground Snow Load (P_g Fig Ice Thickness (t Fig 10-2 to1 and Concurrent Wind Gust (Seizmin Site Class	- 7.1) - 0-6) - (V _c)-	III 0 0.25 30	psf in mph		Matthe	WALENGINI

Enclosure Dimensions & Component Weights

Gillette 68" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)

<u>Wall</u>	Length (ft)		<u>Height (ft)</u>
1	3	х	3.65
2	3	х	3.65
3	6.84	х	3.65
4	6.84	х	3.65

Base Dimensions

Width (Wall 1/2 Side)	=	36	in
Length (Wall 3/4 Side)	=	68	in
Height	=	4	in

Roof/Eave Information

Roof Pitch Angle -	<i>(θ)</i> =	0.0	Degrees
Eave/Roof Height -	h =	3.983	-

Structure Areas

Walls 1/2 Area	-	(w1) =	12.0	$ft^2 = ft^2 = $	1,721	in²
Walls 3/4 Area	-	(w3) =	27.2		3,923	in²
Roof Area	-	(R) =	20.5		2,955	in²
Base Side 1/2 Base Side 3/4		(T1) = (T3) =	144.0 272.0	in2 in2		

Component Weights (lightest setup for worst case)

Genset	=	0	lbs	(Varies, so will use zero to be conservative/most uplift to resist)	
Enclosure	=	283	lbs	(Based on Aluminum to be conserative/most uplift to resist)	
Base	=	273	lbs	(Based on Aluminum to be conserative/most uplift to resist)	LICENSE

STATE OF ΟΝΑ ////////// Matthew T. Baldwin, P.E.

MWFRS Net Pressures

Gillette 68" Frame Gensets

Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

Enclosure Classification	-	Enclosed	ł
Exposure Category	-	D	
Basic Wind Speed	(V)	200	mph
Importance Factor (Wind)	(I_w)	1.15	
Wind Directionality Factors	(K _d)	0.85	
Internal Pressure Coefficients	(GC _{pi})	± 0.18	
Velocity Pressure Exposure Coefficient	(K_z)	1.03	
Roof Mean Height Above Ground Level	(Z)	4.32	ft
Velocity Pressure	(q)	103.12	psf

Wind Direction 1

				Enclos	ure				
			Wall #				Roof		
		1	2	384	Parallel to Ridge				
		1		2	304	(C _p)1	(Distance Fi	rom Windward	Edge)
		Windward	Leeward	Side	0 to 2.0	2.0 to 4.0	4.0 to 6.8		(<i>Op</i>)2
Background Response Factor	(Q)	0.98	0.98	0.97			0.98		
Gust Effect Factors	(G)	0.92	0.92	0.91			0.92		
External Pressure Coefficients	(C _p)	0.80	-0.286	-0.70	-0.92	-0.87	-0.53		-0.18
Net Pressures with + (GC pi) - psf	(Net _{p+})	56.9	-45.6	-84.4	-105.7	-100.4	-68.9		-35.5
Net Pressures with - (GC _{pi}) - psf	(Net _{p-})	94.1	-8.4	-47.3	-68.5	-63.3	-31.7		1.6

Wind Direction 2

		Enclosure								
			Wall #			Roo	f - Norma	al To R	lidge	
		3	3 1							
		5	4	102	(C _p)1	(Distance From Windward Edge)		d Edge)	$(C_{1})^{2}$	
		Windward	Leeward	eward Side	0 to 2.0	> 2.0			$(O_p)^2$	
Background Response Factor	(Q)	0.97	0.97	0.98	0.97					
Gust Effect Factors	(G)	0.91	0.91	0.92			0.9	1		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.7	-65.6	-84.6	-116.4	-84.4			-35.5	
Net Pressures with - (GC _{pi}) - psf	(Net _{p-})	93.8	-28.5	-47.5	-79.3	-47.3			1.6	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

CENSE W T. Ba

Matthew T. Baldwin, P.E. Florida License #64608

Elevation

Wind Direction 1 Υ.

<u>Snow</u>

Importance Factor (Snow) Exposure Factor	(1 _s) (C _a)	1.1 0.8		
Thermal Factor	(C_{t})	1.2		
Slope Factor	(C_s)	1.0		
Flat Roof Snow Load	(p _s)	0	psf	
<u>Seismic</u>				
Importance Factor (Seismic)	(I _{sm})	1.25		
Mapped Acceleration Parameter	(S _s)	0.14	Figures	22-1 Thru 22-14
Mapped Acceleration Parameter	(S1)	0.07	Figures	22-1 Thru 22-14
Site Coefficient	(F _a)	1	-	
Site Coefficient	(F_v)	1		
MCE Spectral Resp. Accel. Short Per.	(S_{MS})	0.140		
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07		
Design Spectral Accel. Short Period	(S_{DS})	0.093		
Design Spectral Accel. 1-s Period	(S_{D1})	0.04667		
Fundamental Period of Structure	(T_a)	0.053	sec	
Long Period Transistion Period	(T_L)	8	sec	Figure 22-15 Thru 22-20
Seismic Design Category	-	Α		
Total Effective Seismic Weight	(W_{eff})	609	lbs	

Response Modification Coeficien	t	(R)	2	Table 12.2-1
System Overstrength Factor		(Ω_{o})	2.5	Table 12.2-1
Deflection Amplification Factor		(C _d)	2	Table 12.2-1
Seismic Response Coefficient		(C _s)	0.058	
Resultant Seismic Forces				
Horizontal Seismic Load Effect	-	(E_h)		
Force at Base of Base	=	0.0	kips	
Force at Top of Base	=	0.0	kips	

=

0

kips

Vertical Seismic Load Effect (E_v) =

Force on Silencer

Force at Top/Bottom of Enclosure = 0.003 kips

(Factor, Used With Deadweight in Load Combinations) 0

Structural Calculations - Roof

Gillette 68" Frame Gensets

Critical Loads & Pressures

-116.4 psf

Wind Pressures

Downforce 1.632 psf = 0.01 psi

= -0.81 psi

Snow Pressure

0.000

psi

psf =

0

Seismic Load

Horizontal Vertical Factor

3 lbs 0

=

=

Roof Live Load

Uplift

Downforce 20.0 psf 0.1389 = psi or 300 lbs Concentrated Load

Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

0.080 Aluminum Panel - 5052-H34

Modulus of Elasticity	(E)	=	1.02E+	04	ksi	
Safety Factor	(Ω)	=	1.67			
Plastic Section Mod x	(Z_x)	=	0.18			
Plastic Section Mod y	(Z_y)	=	0.18			
Tensile Ultimate Strength			(F _{tu})	=	34	ksi
Tensile Yield Strength			(F_{ty})	=	26	ksi
Compressive Yield Streng		(F_{cy})	=	24	ksi	
Shear Ultimate Strength			(F _{su})	=	20	ksi

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift (R) 2,955 jn² (not including discharge hood area) =

Roof Uplift Calculated Forces

Roof Weight	(ω_a)	=	102	lbs
Wind Load Uplift Force	(w _{ru})	=	-2,388	lbs

Total Roof Design Uplift $(W_{ru}) =$ <u>-2,286</u> lbs

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Length - 1 Side	=	5	5/16" - 18 Bolts
Screws Along Width - 1 Side	=	2	5/16" - 18 Bolts
Total Mounting Screws	=	14	5/16" - 18 Bolts

111111111 STATE OF \sim

Matthew T. Baldwin, P.E. Florida License #64608

5/16" - 18 Bolts Page 4 - 1

Entire Roof Uplift Design Calculations

Grade 18-8/SS Ult. Strength 5/16" Bolt Nominal Diamete 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch Washer Nominal Diameter Wall Panel Tensile Ult. Strengt Wall Panel Tensile Yield Streng Safaty Easter	n = r = = h = gth =		150,000 0.255 0.051 18 0.875 34 26 2	psi in in ² in ksi ksi						
Wall Panel Nominal Thickness	=	=	0.0620	in						
Maximum Tensile Strength Maximum Shear/Bearing Stren	= ath =	=	439.2 408.6	lbs lbs						
Max. Tensile Load per Bolt	=	=	408.6	lbs						
Max. Total Screws Tensile Stre	ength		$(P_{ts}) =$	<u>5</u> ,	720	<u>lbs</u>				
Conclusion										
(W _{ru}) 2,286 II	os <	<	(P_{ts})	5,	720	lbs		<u>0K</u>		
Roof Panel Uplift Calc	ulat	ic	<u>ons</u>							
Roof Panel Critical Membe	er Dir	n	<u>ensions</u>							
Critical Panel Length (L Critical Panel Width (N	p) = /p) =	=	68.00 in 36.00 in							
Roof Panel Uplift Calculat	ed Fo	or	<u>ces</u>							
Distributed Loads										
Wind Load Uplift Force (w	_{pu}) =	=	<u>1,978.5</u>	lbs						
Mounting Hardware - Roof Panel	to Roc	of	<u>Frame</u>							
Screws Along Length - 1 Sid Screws Along Width - 1 Side	de = e =	=	7 3		5/16 5/16	" - 18 " - 18	8 Bolts 8 Bolts	5 ·	- Grade - Grade	18-8/SS 18-8/SS
Roof Panel Uplift Design (Calcu	la	ations							
Grade 18-8/SS Ult. Strength 5/16" Bolt Nominal Diamete 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch Washer Nominal Diameter Roof Panel Tensile Ult. Streng Roof Panel Tensile Yield Stren Safety Factor	n = r = = th = gth =		150,000 0.255 0.051 18 0.875 34 26 3	psi in in ² in ksi ksi						
Roof Panel Nominal Thickness	=	=	0.0800	in						
Maximum Tanaila Strangth	_	_	Roof Frame			_	(Accou	ints for and p	screw ull-out	J)
Maximum Tensile Strength Maximum Shear/Bearing Stren	= gth =	=	439.2 408.6				strengt	ns)		
Max. Tensile Load per Scre	w =	=	408.6							
Max. Total Screws Tensile Stre	ength		$(P_{ts}) =$	<u>8,</u>	<u>.171</u>	<u>lbs</u>				PROUNT
(w _{pu}) 1,978 lbs <	(P _{ts} ,)	8,171	lbs	<u>0</u>	<u>K</u>				Motthe

Florida License #64608

Structural Calculations - Wall Panel

Gillette 68" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward	94.1	psf	=	0.6532	psi
Away	-84.6	psf	=	-0.5876	psi

Walls 3 & 4

Maximum Pressures Acting:

Toward	93.8	psf	=	0.6514	psi
Away	-84.4	psf	=	-0.5861	psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

Maximum Downforce	$(W_d) =$	512	lbs
Wind Load Uplift Force	$(w_{pu}) =$	1,978	lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width	=	33.50	in
Critical/Maximum Panel Height	=	42.00	in

Section Properties

0.060 Aluminum Panel - 5052-H34

Cross Sectional Area	(A)	=	2.21	in ²		
Moment of Inertia - x	(I_x)	=	0.052	in ⁴		
Moment of Inertia - y	(I_y)	=	N/A	in ⁴		
Section Modulus - x	(S_x)	=	0.810	in ³		
Section Modulus - y	(S_y)	=	N/A	in ³		
Radius of Gyration - x	(r_x)	=	0.154	in		
Radius of Gyration - y	(r_y)	=	N/a	in		
Weight	<i>(\mathcal{\mathcal</i>	=	0.026	lbs/	in ²	
Modulus of Elasticity	(E)	=	1.02E	+04	ksi	
Safety Factor	(Ω)	=	1.6	7		
Plastic Section Mod x	(Z_x)	=	0.1	3		
Plastic Section Mod y	(Z_{γ})	=	0.1	3		
Tensile Ultimate Strength	ı [´]		(F _{tu})	=	34	ksi
Tensile Yield Strength		(F_{tv})	=	26	ksi	
Compressive Yield Streng		(F_{cv})	=	23	ksi	
Shear Ultimate Strength		(F _{su})	=	20	ksi	
	_					

Wall Panel Calculations

Critical Wall Area

Area of Wall Panel		(W)	=	1,407.0 in ²				
Mounting Hardware - Roof Frame to Wall Panels								
Screws Along Height - 1 Side	=	3		5/16" - 18 Bolts				
Screws Along Width - 1 Side	=	6		5/16" - 18 Bolts				

Total Mounting Screws	=	18	5/16" - 18 Bolts
-----------------------	---	----	------------------

Grade 5 Ultimate Strength	=	150,000	psi	
5/16" Bolt Nominal Diameter	=	0.255	in	
5/16" Bolt Effective Area	=	0.051	in ²	
5/16" Bolt Threads per Inch	=	18		
Washer Nominal Diameter	=	0.875	in	
Roof Panel Tensile Ult. Strength	=	34	ksi	
Roof Panel Tensile Yield Strength	=	26	ksi	
Safety Factor	=	3		
Roof Panel Nominal Thickness	=	0.0800	in	
		Roof Frame		
Maximum Tensile Strength	=	388.7		 (Accounts for screw pull-over and pull-out strengths)
Maximum Shear/Bearing Strength	=	300.0		
Max. Tensile Load per Bolt	=	300.0		
Max. Total Screws Tensile Strengtl	<u>1</u>	$(P_{ts}) =$	<u>4,793</u>	lbs
Conclusion				

 (w_{pu}) 919 lbs < (P_{ts}) 4,793 lbs <u>OK</u>

Structural Calculations - Enclosure to Base

Gillette 68" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	102.5 p	sf =	0.7117	psi
Wall 3 or 4 -	84.4 p	sf =	0.5861	psi
Roof Uplift -	105.7 p	sf =	0.7338	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	102.5	psf =	0.7117	psi
Wall 3 or 4 -	47.3	psf =	0.3283	psi
Roof Uplift -	68.5	psf =	0.4760	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	122.3	psf =	0.8491	psi
Wall 1 or 2 -	84.6	psf =	0.5876	psi
Roof Uplift -	116.4	psf =	0.8082	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	122.3	psf =	0.8491	ps
Wall 1 or 2 -	47.5	psf =	0.3298	ps
Roof Uplift -	79.3	psf =	0.5504	ps

<u>Seismic</u>

Horizontal Seismic Force $(E_h) = 3$ lbs

Enclosure Critical Dimensions & Weights

Total Enclosure	Weight	(W_t)	=	283	lbs
Walls 1/2 Area	-	(w1)	=	1720.8	in ²
Walls 3/4 Area	-	(w3)	=	3923.4	in ²
Roof Area	-	(R)	=	2954.9	in ²

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	1,225	lbs
Wall 3 or 4 -	=	2,300	lbs
Roof Uplift -	=	2,168	lbs

NO. 64660 NO. 64660 STATE OF STATE OF SS/ONAL ENGINEERING

Matthew T. Baldwin, P.E. Florida License #64608

(Includes all components)

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2 -	=	1,225	lbs
Wall 3 or 4 -	=	1,288	lbs
Roof Uplift -	=	1,407	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	3,332	lbs
Wall 1 or 2 -	=	1,011	lbs
Roof Uplift -	=	2,388	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	3,332	lbs
Wall 1 or 2 -	=	568	lbs
Roof Uplift -	=	1,626	lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 Overturn on Walls 3/4	= =	1,299 2,469	lbs lbs			
Net Forces with - Internal Pre	essure(-Gcpi)				
Overturn on Walls 1/2 Overturn on Walls 3/4	= =	918 1,417	lbs lbs			
Wind Direction 2						
Net Forces with + Internal Pre	essure	(+Gcpi)				
Overturn on Walls 3/4 Overturn on Walls 1/2	= =	3,264 1,347	lbs Ibs			
Net Forces with - Internal Pre	essure <i>(</i>	-Gcpi)				
Overturn on Walls 3/4 Overturn on Walls 1/2	= =	2,883 837	lbs lbs			
Design Overturn Force	(0 _E)	= <u>3,2</u>	<u>64</u> lb	s Acting	On Wall 3/	4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, bolt connections along the adjacent walls are neglected. No. of Bolt Connections Along Wall 3/4 = 5 5/16" - 18 Bolts - Grade 18-8/S

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength =	150,000	psi	
Grade 8.8 Nom. Tensile Stress =	112,500	psi	(Includes Reduction Factor)
5/16" Bolt Effective Area =	0.051	in ²	
Tensile Strength per Bolt =	2,873	lbs	
Total Bolts Tensile Strength	=	14,3	64 lbs

Conclusion

 (O_E) 3,264 lbs < (R_v) 14,364 lbs

Matthew T. Baldwin, P.E. Florida License #64608

Page 6 - 2

OK

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 68" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	102.5	psf =	0.7117	psi
Wall 3 or 4 -	84.4	psf =	0.5861	ps
Roof Uplift -	105.7	psf =	0.7338	ps

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	102.5	psf =	0.7117	psi
Wall 3 or 4 -	47.3	psf =	0.3283	psi
Roof Uplift -	68.5	psf =	0.4760	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	122.3	psf =	0.8491	psi
Wall 1 or 2 -	84.6	psf =	0.5876	psi
Roof Uplift -	116.4	psf =	0.8082	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	122.3	psf =	0.8491	psi
Wall 1 or 2 -	47.5	psf =	0.3298	psi
Roof Uplift -	79.3	psf =	0.5504	psi

Seismic

Enclosure Horiz. Seismic Force $(EE_h) = 3$ Ibs Base/Tank Horiz. Seismic Force $(EB_h) = 6$ Ibs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure	Weight	(W_t)	=	556	lbs	(Includes all components)
Walls 1/2 Area	-	(w1)	=	1,865	in ²	(Includes Base/Tank Surface Area)
Walls 3/4 Area	-	(w3)	=	4,195	in ²	(Includes Base/Tank Surface Area)
Roof Area	-	(R)	=	2,955	in ²	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	:	1,327	lbs
Wall 3 or 4 -	- =	=	2,459	lbs
Roof Uplift	- =	=	2,168	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2 -	=	1,327	lbs
Wall 3 or 4 -	=	1,377	lbs
Roof Uplift -	=	1.407	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	3,562	lbs
Wall 1 or 2 -	=	1,096	lbs
Roof Uplift -	=	2,388	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	3,562	lbs
Wall 1 or 2 -	=	615	lbs
Roof Uplift -	=	1,626	lbs

Enclosure with Base/Tank Maximum Wind Fo	rce	=	3,562	lbs Acting On Wall 3/4
Coefficient of Friction - Steel to Wet Concrete Frictional Resisting Force (Total Weight x $\mu_{s})$	(μ_s)	= =	0.45 250	
Enclosure with Base/Tank Design Shear	(V _{EB})	=	3,312	

Enclosure With Base/Tank Overturn Forces (Inlcudes Seismic)

Postive forces act upward

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	1,227	lbs
Overturn on Walls 3/4	=	2,580	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 1/2	=	846	lbs
Overturn on Walls 3/4	=	1,421	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	3,484	lbs
Overturn on Walls 1/2	=	1,264	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 3/4	=	3,103	lbs
Overturn on Walls 1/2	=	731	lbs

(O_{EB}) = 3,484 Ibs Acting On Wall 3/4 Design Overturn Force

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4 =	= 2	Bolts	1/2" Set Bolt Anchors	-	Grade 5/Galv
--	-----	-------	-----------------------	---	--------------

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Grade 5	Ultim	ate St	ress	=	120,00	00	psi	
Grade 5	Nom. S	Shear S	Stress	=	48,000	0	psi	
Grade 5	Nom. T	ensile	Stress	=	90,000	0	psi	
1/2" Bolt N	ominal A	rea		=	0.159)	in ²	
Shear Stre	ngth per	Bolt		=	3,816	;	lbs	
Tensile Strength per Bolt		=	7,155	;	lbs			
Avail. Tensil	e Streng	th per	Bolt	=	1,781		lbs (Combin	ed Tension and Shear)
Total Bolts Total Bolts	Shear S Tensile	Streng Stren	th gth		(R_{vb}) (R_{tb})	=	7,632 3,562	lbs lbs
Conclusion								
Shear								
(V_{EB})	3,312	lbs	< (R	? _{tb})	7,632	2	lbs	<u>OK</u>
Tension								
(O _{EB})	3,484	lbs	< (F	(t_{tb})	3,562	2	lbs	<u>OK</u>

