

ENGINEERING STRUCTURAL CALCULATIONS For Gillette 78" Frame Gensets

March 12, 2025

78" Frame Genset Models:

 SP-410
 SPD-600

 SP-620
 SPJD-600

 PR-550

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures 2020 Aluminum Association Design Manual ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (3) per side (6) total

Project Information

Project Name/Model

- Gillette 78" Frame Gensets
- **Project Number Project Description Project Location** Customer Mounting Location
- Sound Attenuated Generator Enclosure
- Florida
- Ground

Enclosure Materials

Roof Panels	- 0.080 Aluminum Panel - 5052-H34
Wall Panels	- 0.060 Aluminum Panel - 5052-H34
Base Frame/Skid	- Aluminum Formed Steel 'C' Channel

Components

GenSet Manufacturer GenSet Size and Model Base

- Gillette
- SP-410,SP620,PR-550,SPD-600,SPJD-600 - Aluminum Formed Steel 'C' Channel
- Supported by -Base

Fasteners/Hardware

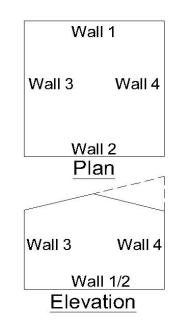
		Bolt Size	9	Washer	Nut	Grade/Finish
Roof to Walls Wall to Wall Walls to Base Base to Slab/Tank	- - -	5/16" - 18 E 5/16" - 18 E 5/16" - 18 E 1/2" Set Bolt A	3olts 3olts	5/16" Washer 5/16" Washer 5/16" Washer Flat Washers	Nut Clip Nut Clip Nut Clip Hex Nuts	Grade 18-8/SS Grade 18-8/SS Grade 18-8/SS Grade 5/Galv.
Specification Requireme	<u>nts</u>				EX .	
Wind Speed Exposure Category	- 2	200 mph D				
Risk Category Ground Snow Load (<i>P</i> _g Fig 7.1) Ice Thickness (<i>t</i> Fig 10-2 to10-6)		III 0 psf).25 in				
and Concurrent Wind Gust (V_c) Seismic Site Class		30 mph B	Dogo 1			v T. Baldwin, P.E. a License #64608

Enclosure Dimensions & Component Weights

Gillette 78" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)


Wall	Length (ft)		<u>Height (ft)</u>
1	3.5	х	4.15
2	3.5	х	4.15
3	7.84	х	4.15
4	7.84	х	4.15

Base Dimensions

Width (Wall 1/2 Side)	=	42	in
Length (Wall 3/4 Side)	=	78	in
Height	=	4	in

Roof/Eave Information

Roof Pitch Angle -	<i>(θ)</i> =	0.0	Degrees
Eave/Roof Height -	h =	4.483	

Structure Areas

Walls 1/2 Area Walls 3/4 Area Roof Area	-	(w3) =		$ft^2 =$	5,062	in ²
Base Side 1/2 Base Side 3/4		(T1) = (T3) =	168.0 312.0	in2 in2		

Component Weights (lightest setup for worst case)

Genset	=	0	lbs	(Varies, so will use zero to be conservative/most uplift to resist)	
Enclosure	=	150	lbs	(Based on Aluminum to be conserative/most uplift to resist)	
Base	=	100	lbs	(Based on Aluminum to be conserative/most uplift to resist)	

STATE OF ΟΝΑ ////////// Matthew T. Baldwin, P.E.

MWFRS Net Pressures

Gillette 78" Frame Gensets

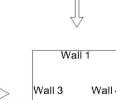
Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

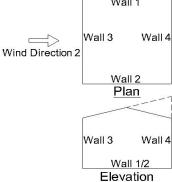
Enclosure Classification	-	Enclosed	ł
Exposure Category	-	D	
Basic Wind Speed	(V)	200	mph
Importance Factor (Wind)	(I_w)	1.15	
Wind Directionality Factors	(K _d)	0.85	
Internal Pressure Coefficients	(GC _{pi})	± 0.18	
Velocity Pressure Exposure Coefficient	(K_z)	1.03	
Roof Mean Height Above Ground Level	(Z)	4.82	ft
Velocity Pressure	(q)	103.12	psf

Wind Direction 1

		Enclosure									
			Wall #		Roof						
		1	0 084		2 3&4	1 2		Par	allel to Ridg	е	
		I	2	584	$(C_p)1$ (Distance From Windward Edge)			Edge)	(C _p)2		
		Windward	Leeward	Side	0 to 2.2	2.2 to 4.5	4.5 to 7.8		(0 p)2		
Background Response Factor	(Q)	0.98	0.98	0.97			0.98				
Gust Effect Factors	(G)	0.91	0.91	0.91			0.91				
External Pressure Coefficients	(C _p)	0.80	-0.288	-0.70	-0.92	-0.87	-0.53		-0.18		
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.9	-45.7	-84.3	-105.3	-100.7	-68.4		-35.5		
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	94.0	-8.6	-47.2	-68.2	-63.6	-31.3		1.6		


Wind Direction 2

		Enclosure								
			Wall #		Roof - Normal To Ridge					
		3	4	1&2	180					
		5	4	102	(C _p)1	(Distance I	From Windward	d Edge)	(C _p)2	
		Windward	Leeward	Side	0 to 2.2	> 2.2			$(O_p)^2$	
Background Response Factor	(Q)	0.97	0.97	0.98			0.9	7		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.9	1		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.6	-65.5	-84.6	-116.3	-84.3			-35.5	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.7	-28.4	-47.4	-79.1	-47.2			1.7	


Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

CENSE W T. Ba

Matthew T. Baldwin, P.E. Florida License #64608

Wind Direction 1

<u>Snow</u>

Importance Factor (Snow) Exposure Factor Thermal Factor Slope Factor	(I _s) (C _e) (C _t) (C _s)	1.1 0.8 1.2 1.0	
Flat Roof Snow Load	(p _s)	0	psf
<u>Seismic</u>			
Importance Factor (Seismic)	(1 _{sm})	1.25	
Mapped Acceleration Parameter	(S _s)	0.14	Figures 22-1 Thru 22-14
Mapped Acceleration Parameter	(S ₁)	0.07	Figures 22-1 Thru 22-14
Site Coefficient	(F _)	1	0
Site Coefficient	(F_v)	1	
MCE Spectral Resp. Accel. Short Per.		0.140	
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07	
Design Spectral Accel. Short Period	(S_{DS})	0.093	
Design Spectral Accel. 1-s Period	(S_{D1})	0.04667	
Fundamental Period of Structure	(T_a)	0.058	sec
Long Period Transistion Period	(T_L)	8	sec Figure 22-15 Thr

5 1	(- 01)			
Fundamental Period of Structure	(T _a)	0.058	sec	
Long Period Transistion Period	(T_L)	8	sec	Figure 22-15 Thru 22-20
Seismic Design Category	-	Α		
Total Effective Seismic Weight	(W_{eff})	326	lbs	
Response Modification Coeficient	(R)	2	Table	12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table	12.2-1
Deflection Amplification Factor	(C _d)	2	Table	12.2-1
Seismic Response Coefficient	(C _s)	0.058		

Resultant Seismic Forces

Horizontal Seismic Load Effect	-	(E_h)	
Force at Base of Base	=	0.0	kips
Force at Top of Base	=	0.0	kips
Force at Top/Bottom of Enclosure	=	0.002	kips
Force on Silencer	=	0	kips
Vartical Calamia Land Effect (E)			

Vertical Seismic Load Effect (E_v) = 0 (Factor, Used With Deadweight in Load Combinations)

Structural Calculations - Roof

Gillette 78" Frame Gensets

Critical Loads & Pressures

-116.3 psf

Wind Pressures

Downforce 1.651 psf = 0.01 psi = -0.81 psi

Snow Pressure 0 psf = 0.000

Seismic Load

Horizontal Vertical Factor

psi

2 lbs 0

=

=

Roof Live Load

Uplift

Downforce 20.0 psf 0.1389 = psi or 300 lbs Concentrated Load

Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

0.080 Aluminum Panel - 5052-H34

Modulus of Elasticity	(E)	=	1.02E-	+04	ksi	
Safety Factor	(Ω)	=	1.67	7		
Plastic Section Mod x	(Z_x)	=	0.18	3		
Plastic Section Mod y	(Z_y)	=	0.18	3		
Tensile Ultimate Strength	1 I		(F _{tu})	=	34	ksi
Tensile Yield Strength			(F_{ty})	=	26	ksi
Compressive Yield Strength			(F_{cy})	=	24	ksi
Shear Ultimate Strength			(F _{su})	=	20	ksi

Entire Roof Uplift Calculations

Roof Area

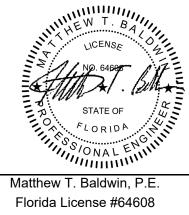
Area of Roof Subjected to Uplift (R) 3,951 in² (not including discharge hood area) =

Roof Uplift Calculated Forces

Roof Weight	(0 _a) :	=	102	lbs
Wind Load Uplift Force	(w _{ru}) :	=	-3,190	lbs

Total Roof Design Uplift $(W_{ru}) =$ <u>-3,088</u> lbs

Mounting Hardware - Roof Frame to Wall Panels


Screws Along Length - 1 Side	=	6	5/16" - 18 Bolts
Screws Along Width - 1 Side	=	3	5/16" - 18 Bolts
Total Mounting Screws	=	18	5/16" - 18 Bolts

STATE OF ////in//

- 5/	16"	-	10	۲
	Page	e 4	- 1	

Entire Roof Uplift Design Calculations

5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch Washer Nominal Diameter Wall Panel Tensile Ult. Strength Wall Panel Tensile Yield Strength Safety Factor Wall Panel Nominal Thickness Maximum Tensile Strength Maximum Shear/Bearing Strength	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	psi in in ² in ksi ksi in Ibs Ibs
Max. Total Screws Tensile Strength Conclusion	$(P_{ts}) =$	<u>7,354 lbs</u>
(W _{ni}) 3,088 lbs <	< (P.,)	7,354 lbs <u>OK</u>
Roof Panel Uplift Calculat	,	1,001 1.00 <u>OII</u>
Roof Panel Critical Member Dir		
	= 78.00 in = 42.00 in	
Roof Panel Uplift Calculated For	orces	
Distributed Loads		
Wind Load Uplift Force (w_{pu}) =	= <u>2,645.1</u>	lbs
Mounting Hardware - Roof Panel to Roo	oof Frame	
	= 8 = 4	5/16" - 18 Bolts - Grade 5/16" - 18 Bolts - Grade
Roof Panel Uplift Design Calcu	ulations	
5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch Washer Nominal Diameter Roof Panel Tensile Ult. Strength Roof Panel Tensile Yield Strength Safety Factor	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	psi in in ² in ksi ksi in
Maximum Shear/Bearing Strength	= <u>Roof Frame</u> = <u>439.2</u> = 408.6 = 408.6	e (Accounts for screw pull-over and pull-out strengths)
Max. Total Screws Tensile Strength	$(P_{ts}) =$	<u>9,806 lbs</u>
$\frac{\text{Conclusion}}{(w_{pu})} 2,645 \text{ lbs } < (P_{ts})$	<i>,)</i> 9,806	lbs <u>OK</u>

18-8/SS 18-8/SS

Florida License #64608

Structural Calculations - Wall Panel

Gillette 78" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward	94.0	psf	=	0.6527	psi
Away	-84.6	psf	=	-0.5872	psi

Walls 3 & 4

Maximum Pressures Acting:

Toward	93.7	psf	=	0.6508	psi
Away	-84.3	psf	=	-0.5856	psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

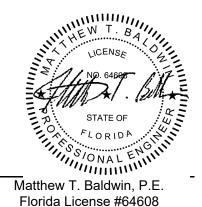
Maximum Downforce	$(W_d) =$	651	lbs
Wind Load Uplift Force	$(w_{pu}) =$	2,645	lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width	=	39.50	in
Critical/Maximum Panel Height	=	48.00	in

Section Properties


0.060 Aluminum Panel - 5052-H34

Cross Sectional Area	(4)	_	0 50	. 2		
Cross Sectional Area	(A)		2.58			
Moment of Inertia - x	(1 _x)	=	0.052	in ⁴		
Moment of Inertia - y	(I_y)	=	N/A	in ⁴		
Section Modulus - x	(S _x)	=	0.880	in ³		
Section Modulus - y	(S _y)	=	N/A	in ³		
Radius of Gyration - x	(r _x)	=	0.140	in		
Radius of Gyration - y	(r _y)	=	N/a	in		
Weight	(@)	=	0.026	lbs/	'in ²	
Modulus of Elasticity	(E)	=	1.02E	+04	ksi	
Safety Factor	(Ω)	=	1.6	7		
Plastic Section Mod x	(Z_x)	=	0.1	3		
Plastic Section Mod y	(Z_y)	=	0.1	3		
Tensile Ultimate Strength	۰ ۱		(F _{tu})	=	34	ksi
Tensile Yield Strength			(F_{ty})	=	26	ksi
Compressive Yield Strength			(F_{cy})	=	23	ksi
Shear Ultimate Strength			(F _{su})	=	20	ksi
Wall Papal Calculat	ione					

Wall Panel Calculations

Critical Wall Area

Area of Wall Panel		(W)	=	1,896.0 in ²
Mounting Hardware - Roof Frame to	Wall F	Panels		
Screws Along Height - 1 Side Screws Along Width - 1 Side	=	3 6		5/16" - 18 Bolts 5/16" - 18 Bolts
Total Mounting Screws	=	18		5/16" - 18 Bolts

Grade 5 Ultimate Strength 5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch	= = =	150,000 0.255 0.051 18	psi in in ²	
Washer Nominal Diameter	=	0.875	in	
Roof Panel Tensile Ult. Strength	=	34	ksi	
Roof Panel Tensile Yield Strength	=	26	ksi	
Safety Factor	=	3		
Roof Panel Nominal Thickness	=	0.0800	in	
	_	Roof Frame	÷	
Maximum Tensile Strength	=	388.7		(Accounts for screw pull-over and pull-out strengths)
Maximum Shear/Bearing Strength	=	300.0		
Max. Tensile Load per Bolt	=	300.0		
Max. Total Screws Tensile Strengt	<u>h</u>	$(P_{ts}) =$	<u>4,793</u>	lbs
Conclusion				

 (w_{pu}) 1,238 lbs < (P_{ts}) 4,793 lbs <u>OK</u>

Structural Calculations - Enclosure to Base

Gillette 78" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	102.6	psf =	0.7124	psi
Wall 3 or 4 -	84.3	psf =	0.5856	psi
Roof Uplift -	105.3	psf =	0.7313	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	102.6	psf =	0.7124	psi
Wall 3 or 4 -	47.2	psf =	0.3278	psi
Roof Uplift -	68.2	psf =	0.4735	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	122.1	psf =	0.8482	psi
Wall 1 or 2 -	84.6	psf =	0.5872	psi
Roof Uplift -	116.3	psf =	0.8074	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4	-	122.1	psf =	0.8482	psi
Wall 1 or 2 -		47.4	psf =	0.3294	psi
Roof Uplift -	-	79.1	psf =	0.5496	psi

Seismic

Horizontal Seismic Force $(E_h) = 2$ Ibs

Enclosure Critical Dimensions & Weights

Total Enclosure W	Veight	(W_t)	=	150	lbs
Walls 1/2 Area -	-	(w1)	=	2259.6	in ²
Walls 3/4 Area -	-	(w3)	=	5061.5	in ²
Roof Area -		(R)	=	3951.4	in ²

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -		=	1,610	lbs
Wall 3 or 4	-	=	2,964	lbs
Roof Uplift	-	=	2,890	lbs

Matthew T. Baldwin, P.E. Florida License #64608

(Includes all components)

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2	-	=	1,610	lbs
Wall 3 or 4	-	=	1,659	lbs
Roof Uplift	-	=	1,871	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	4,293	lbs
Wall 1 or 2 -	=	1,327	lbs
Roof Uplift -	=	3,190	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	4,293	lbs
Wall 1 or 2 -	=	744	lbs
Roof Uplift -	=	2,172	lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 Overturn on Walls 3/4		1,830 3,268	lbs Ibs				
Net Forces with - Internal Pre	essure <i>(</i>	-Gcpi)					
Overturn on Walls 1/2 Overturn on Walls 3/4		1,321 1,923	lbs Ibs				
Wind Direction 2							
Net Forces with + Internal Pr	essure	(+Gcpi)					
Overturn on Walls 3/4 Overturn on Walls 1/2		4,270 1,900	lbs lbs				
Net Forces with - Internal Pre	essure <i>(</i>	-Gcpi)					
Overturn on Walls 3/4 Overturn on Walls 1/2			lbs Ibs				
Design Overturn Force	(0 _E)	= <u>4,2</u>	<u>70</u>	lbs	Acting	On Wal	I 3/4
Mounting Hardware - Enclosure to Base/Tank or Pad							

To be conservative, bolt connections along the adjacent walls are neglected. No. of Bolt Connections Along Wall 3/4 = 6 5/16" - 18 Bolts - Grade 18-8/S

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength =	150,000	psi	
Grade 8.8 Nom. Tensile Stress =	112,500	psi	(Includes Reduction Factor)
5/16" Bolt Effective Area =	0.051	in ²	
Tensile Strength per Bolt =	2,873	lbs	
Total Bolts Tensile Strength	=	17,2	236 lbs

Conclusion

 (O_E) 4,270 lbs < (R_v) 17,236 lbs

S ND. 64666 ND. 64666 STATE OF FLORIDA SONAL ENGINEERING

Matthew T. Baldwin, P.E. Florida License #64608

Page 6 - 2

OK

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 78" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	102.6	psf =	0.7124	psi
Wall 3 or 4 -	84.3	psf =	0.5856	psi
Roof Uplift -	105.3	psf =	0.7313	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	102.6	psf =	0.7124	psi
Wall 3 or 4 -	47.2	psf =	0.3278	psi
Roof Uplift -	68.2	psf =	0.4735	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	122.1	psf =	0.8482	psi
Wall 1 or 2 -	84.6	psf =	0.5872	psi
Roof Uplift -	116.3	psf =	0.8074	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	122.1	psf =	0.8482	psi
Wall 1 or 2 -	47.4	psf =	0.3294	psi
Roof Uplift -	79.1	psf =	0.5496	psi

<u>Seismic</u>

Enclosure Horiz. Seismic Force $(EE_h) = 2$ Ibs Base/Tank Horiz. Seismic Force $(EB_h) = 3$ Ibs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	250	Ibs (Includes all	components)
Walls 1/2 Area -				e/Tank Surface Area)
Walls 3/4 Area -	(w3) =	5,374	in ² (Includes Base	e/Tank Surface Area)
Roof Area -	(R) =	3,951	in ²	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	1,729	lbs
Wall 3 or 4 -	=	3,147	lbs
Roof Uplift -	=	2,890	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2 -	=	1,729	lbs
Wall 3 or 4 -	=	1,761	lbs
Roof Uplift -	=	1.871	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	4,558	lbs
Wall 1 or 2 -	=	1,426	lbs
Roof Uplift -	=	3,190	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	4,558	lbs
Wall 1 or 2 -	=	800	lbs
Roof Uplift -	=	2,172	lbs

Enclosure with Base/Tank Maximum Wind Force	e	=	4,558	lbs Acting On Wall 3/4
Coefficient of Friction - Steel to Wet Concrete (, Frictional Resisting Force (Total Weight x μ_s)	μ _s)	= =	0.45 113	
Enclosure with Base/Tank Design Shear (V	(_{EB})	=	4,445	

Enclosure With Base/Tank Overturn Forces (Inlcudes Seismic)

Postive forces act upward

Wind Direction 1

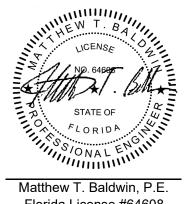
Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	1,852	lbs
Overturn on Walls 3/4	=	3,488	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 1/2	=	1,343	lbs
Overturn on Walls 3/4	=	2,025	lbs

Wind Direction 2


Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	4,609	lbs
Overturn on Walls 1/2	=	1,909	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 3/4	=	4,099	lbs
Overturn on Walls 1/2	=	1,208	lbs

(O_{EB}) = 4,609 Ibs Acting On Wall 3/4 Design Overturn Force

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4	=	3	Bolts	1/2" Set Bolt Anchors	- Grade 5/Galv.
--	---	---	-------	-----------------------	-----------------

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Grade 5 Grade 5 Grade 5 1/2" Bolt N Shear Stre Tensile Str Avail. Tensi	Nom. Te ominal A ngth per ength pe	hear S ensile rea Bolt r Bolt	Stress Stress		0.10)0)0 9 6 5	psi psi in ² Ibs Ibs Ibs (Combir	ned Tension and Shear)
Total Bolts	Shear S	treng	th		(R_{vb})			lbs
Total Bolts	Tensile	Stren	gth		(R_{tb})	=	5,342	lbs
<u>Conclusion</u>								
Shear								
(V _{EB})	4,445	lbs	< (R	tb)	11,44	8	lbs	<u>OK</u>
Tension								
(O _{EB})	4,609	lbs	< (R	_{tb})	5,34	2	lbs	<u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608