

For Gillette 98" Frame Gensets

March 12, 2025

98" Frame Genset Models:

PR-800

SPD-1000

SP-960 SPJD-1000

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition

ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures

2020 Aluminum Association Design Manual

ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (6) per side (12) total

Project Information

Project Name/Model # - Gillette 98" Frame Gensets

Project Number

Project Description - Sound Attenuated Generator Enclosure

Project Location - Florida

Customer

Mounting Location

- Ground

Enclosure Materials

Roof Beam - 14 Gage Truss - CRS

Roof Panels - 0.080 Aluminum Panel - 5052-H34 Wall Panels - 0.080 Aluminum Panel - 5052-H34 Base Frame/Skid - Aluminum Formed Steel 'C' Channel

Components

GenSet Manufacturer - Gillette

- SPR-800, SP-960, SPJD-1000, SPD-1000 Supported by -GenSet Size and Model Base

Base - Aluminum Formed Steel 'C' Channel

Fasteners/Hardware

		Bolt Size	Washer	Nut	Grade/Finish
Roof to Walls Wall to Wall Walls to Base Base to Slab/Tank	- - -	5/16" - 18 Bolts 5/16" - 18 Bolts 5/16" - 18 Bolts 1/2" Set Bolt Anchors	5/16" Washer 5/16" Washer 5/16" Washer Flat Washers	Nut Clip Nut Clip Nut Clip Hex Nuts	Grade 18-8/SS Grade 18-8/SS Grade 18-8/SS Grade 5/Galv.
				MILHEN	N T. BA

Specification Requirements

Wind Speed 200 mph **Exposure Category** D Risk Category Ш Ground Snow Load (P_g Fig 7.1) -0 psf Ice Thickness (t Fig 10-2 to 10-6) -0.25 in and Concurrent Wind Gust (V_c) -30 mph Seismic Site Class В

Matthew T. Baldwin, P.E. Florida License #64608

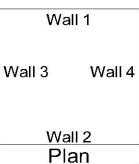
Page 1

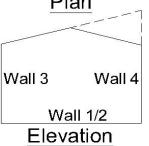
Enclosure Dimensions & Component Weights

Gillette 98" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)


<u>Wall</u>	Length (ft)		Height (ft)
1	4.02	X	5.36
2	4.02	X	5.36
3	11.18	X	5.36
4	11.18	Х	5.36


Base Dimensions

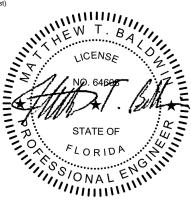
Width (Wall 1/2 Side)	=	48	in
Length (Wall 3/4 Side)	=	98	in
Height	=	7	in

Roof/Eave Information

Roof Pitch Angle -	$(\theta) =$	0.0	Degrees
Eave/Roof Height -	h =	5.943	

Structure Areas

Walls 1/2 Area Walls 3/4 Area Roof Area	-	(w3) =	23.9 66.4 44.9	$ft^2 =$	9,568	in ²
Base Side 1/2		(T1) =	336.0			

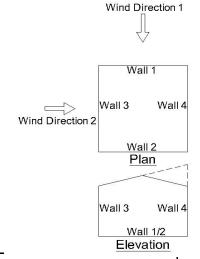

Component Weights (lightest setup for worst case)

Base Side 3/4 (*T3*) = 686.0 in2

Genset = 0 lbs (Varies, so will use zero to be conservative/most uplift to resist)

Enclosure = 200 lbs (Based on Aluminum to be conservative/most uplift to resist)

Base = 150 lbs (Based on Aluminum to be consertive/most uplift to resi


MWFRS Net Pressures

Gillette 98" Frame Gensets

Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

Enclosure Classification	-	Enclosed	d
Exposure Category	-	D	
Basic Wind Speed	(V)	200	mph
Importance Factor (Wind)	(I_w)	1.15	
Wind Directionality Factors	(K_d)	0.85	
Internal Pressure Coefficients	(GC _{pi})	± 0.18	
Velocity Pressure Exposure Coefficient	(K_z)	1.03	
Roof Mean Height Above Ground Level	(z)	6.53	ft
Velocity Pressure	(q)	103.12	psf

Wind Direction 1									
		Enclosure							
		Wall #			Roof				
		1 2 3&4		3&4 Parallel to Ridge		e			
		ı	2	304	(C _p)1 (Distance From Windward Edge)		Edge)	(C _p)2	
		Windward	Leeward	Side	0 to 3.0	3.0 to 5.9	5.9 to 11.2		(Op)2
Background Response Factor	(Q)	0.97	0.97	0.97			0.97		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.91		
External Pressure Coefficients	(C _p)	0.80	-0.261	-0.70	-0.91	-0.89	-0.51		-0.18
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.7	-43.1	-84.1	-104.1	-102.1	-66.8		-35.5
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.9	-6.0	-47.0	-67.0	-65.0	-29.7		1.6

Wind Direction 2										
					Er	closure				
		Wall #			Roof - Normal To Ridge					
		3	4	1&2						
		3	Ť	10.2	(C _p)1 (Distance From Windward Edge)		d Edge)	(C _p)2		
		Windward	Leeward	Side	0 to 3.0	> 3.0			(Op)2	
Background Response Factor	(Q)	0.97	0.97	0.97			0.9	7		
Gust Effect Factors	(G)	0.91	0.91	0.91			0.9	1		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.3	-65.4	-84.4	-115.9	-84.1			-35.4	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.5	-28.3	-47.3	-78.8	-47.0			1.7	·

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Snow

Importance Factor (Snow)	(I_s)	1.1
Exposure Factor	(C _e)	8.0
Thermal Factor	(C_t)	1.2
Slope Factor	(C _s)	1.0

Flat Roof Snow Load (p_s) 0 psf

Seismic

Importance Factor (Seismic)	(I_{sm})	1.25	
Mapped Acceleration Parameter	(S _s)	0.14	Figures 22-1 Thru 22-14
Mapped Acceleration Parameter	(S ₁)	0.07	Figures 22-1 Thru 22-14
Site Coefficient	(F_a)	1	
Site Coefficient	(F_{v})	1	
MCE Spectral Resp. Accel. Short Per.	(S_{MS})	0.140	
MCE Spectral Resp. Accel. 1-s Period	(S_{M1})	0.07	
Design Spectral Accel. Short Period	(S _{DS})	0.093	
Design Spectral Accel. 1-s Period	(S_{D1})	0.04667	
Fundamental Period of Structure	(T_a)	0.070	sec
Long Period Transistion Period	(T_L)	8	sec Figure 22-15 Thru 22-20
Seismic Design Category	-	Α	
Total Effective Seismic Weight	$(W_{\it eff})$	811	lbs
Response Modification Coeficient	(R)	2	Table 12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table 12.2-1
Deflection Amplification Factor	(C_d)	2	Table 12.2-1
Seismic Response Coefficient	(C _s)	0.058	

Resultant Seismic Forces

Horizontal Seismic Load Effect - (E_h) Force at Base of Base = 0.0 kips Force at Top of Base = 0.00 kips Force at Top/Bottom of Enclosure = 0.002 kips

Force on Silencer = 0 kips

Vertical Seismic Load Effect $(E_v) = 0$ (Factor, Used With Deadweight in Load Combinations)

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Roof

Gillette 98" Frame Gensets

Critical Loads & Pressures

Wind Pressures	Snow Pressure	Seismic Load		
Downforce 1.708 psf = 0.01 psi Uplift -115.9 psf = -0.81 psi		Horizontal = 2 lbs Vertical Factor = 0		
Roof Live Load				

Downforce 20.0 psf = 0.1389 psi or 300 lbs Concentrated Load

Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

14 Gage Truss - CRS

Cross Sectional Area (A) $= 0.36 \text{ in}^2$ Moment of Inertia - x $(I_x) = 0.320 \text{ in}^4$ Moment of Inertia - y (I_y) N/A in⁴ Section Modulus - x $(S_x) = 0.360 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x $(r_x) =$ 0.940 in Radius of Gyration - y (r_y) N/A in

Weight $(\omega) = 0.090$ lbs/in Modulus of Elasticity (E) = 2.90E+04 ksi Safety Factor $(\Omega) = 1.95$ Plastic Section Mod. - x $(Z_x) = 0.18$ Plastic Section Mod. - y $(Z_y) = 0.18$

Tensile Ultimate Strength $(F_{tu}) = 58 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 36 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 22 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 36 \text{ ksi}$

Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length $(L_i) = 38.81$ in Load Spanned Width $(W_i) = 48.88$ in

Interior Beam Calculated Forces

Distributed Loads

Weight of Beam $(\omega) = 0.090$ lbs/in Wind Load Downforce $(W_d) = 0.502$ lbs/in Wind Load Uplift Force $(W_u) = -34.230$ lbs/in

Shear Forces (Maximum at End)

Beam Weight Shear $(V_b) =$ 1.75 lbs Wind DownForce Shear $(V_{wd}) =$ 9.7 lbs Wind Uplift Shear $(V_{wu}) =$ -664.3 lbs **Total Shear Downward** = 11.5 lbs **Total Shear Upward** 662.5 lbs

 $(V_{bi}) =$ **Design Shear** 662.5 <u>lbs</u>

Stress Forces (Bending)

 $(M_b) =$ **Beam Weight Moment** 11 lb·in $(M_d) =$ Wind Downforce Moment 47 lb·in Wind Uplift Moment $(M_u) =$ -3,223 lb·in **Total Moments Downward** 59 **lb**·in **Total Moments Upward** 3,211 lb·in $(M_T) =$ **Design Moment** 3,211 lb·in

 $(\sigma_{bi}) =$ **Design Stress** 8,921 psi

Interior Beam Design Calculations

Allowable Shear Strength

 $(S_1) =$ Slenderness Limit 1 -20.08 $(S_2) =$ Slenderness Limit 2 102.40 Slenderness Ratio (S) =18.0 Allowable Shear Stress 9,856 psi

Allowable Shear Strength $(V_n) =$ 3,548 lbs

Conclusion

 $< (V_n)$ (V_{bi}) 663 lbs 3,548 lbs OK

Allowable Stresses For Tension And Compression (Bending)

Tension

Allowable Tensile Stress (F_t) 16,000 psi

Compression

 $(S_1) =$ Slenderness Limit 1 25.0 $(S_2) =$ Slenderness Limit 2 125.0 (S) =Slenderness Ratio 41.3

Allowable Compressive Stress $(F_c) = 13,121 \text{ psi}$

> Allowable Compressive Stress is the controlling The failure design Therefore, $(F_b) =$ 13,121 psi

Conclusion

 (σ_{bi}) 8,921 psi < (F_b) 13,121 psi **OK**

Matthew T. Baldwin, P.E. Florida License #64608

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift (R) 6,472 in² (not including discharge hood area)

Roof Uplift Calculated Forces

Roof Weight 102 lbs Wind Load Uplift Force lbs $(w_{ru}) =$ -5,211 Total Roof Design Uplift $(W_{ru}) =$ -5,109 lbs

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Length - 1 Side 5/16" - 18 Bolts Screws Along Width - 1 Side 3 5/16" - 18 Bolts **Total Mounting Screws** 18 5/16" - 18 Bolts

Entire Roof Uplift Design Calculations

Grade 18-8/SS Ult. Strength 150,000 psi 5/16" Bolt Nominal Diameter 0.255 in 5/16" Bolt Effective Area 0.051 in² 5/16" Bolt Threads per Inch 18 = Washer Nominal Diameter 0.875 in Wall Panel Tensile Ult. Strength = 34 ksi Wall Panel Tensile Yield Strength 26 ksi Safety Factor 3 Wall Panel Nominal Thickness 0.0620 in Maximum Tensile Strength 439.2 lbs Maximum Shear/Bearing Strength = 408.6 lbs Max. Tensile Load per Bolt 408.6 lbs

lbs Max. Total Screws Tensile Strength $(P_{ts}) =$ 7,354

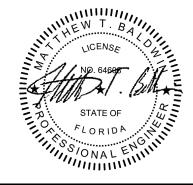
Conclusion

Distributed Loads

5,109 7,354 lbs <u>OK</u> (W_{ru}) lbs < (P_{ts})

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions


Critical Panel Length $(L_p) = 48.90 \text{ in}$ $(W_p) = 48.00 \text{ in}$ Critical Panel Width

Roof Panel Uplift Calculated Forces

Wind Load Uplift Force $(w_{pu}) =$ 1,889.9 lbs

Mounting Hardware - Roof Panel to Roof Frame

Screws Along Length - 1 Side 3 5/16" - 18 Bolts - Grade 18-8/SS Screws Along Width - 1 Side 3 5/16" - 18 Bolts - Grade 18-8/SS

Matthew T. Baldwin, P.E.

Florida License #64608

Roof Panel Uplift Design Calculations

Grade 18-8/SS Ult. Strength 150,000 psi 5/16" Bolt Nominal Diameter = 0.255 in 5/16" Bolt Effective Area 0.051 in^2 5/16" Bolt Threads per Inch 18 Washer Nominal Diameter 0.875 = in 34 Roof Panel Tensile Ult. Strength ksi Roof Panel Tensile Yield Strength = 26 ksi Safety Factor 3 **Roof Panel Nominal Thickness** 0.0800 in

Maximum Tensile Strength = Roof Frame (Accounts for screw pull-over and pull-out strengths)

Maximum Shear/Bearing Strength = 408.6

Max. Tensile Load per Screw = 408.6

Max. Total Screws Tensile Strength $(P_{ts}) = 4,903$ lbs

Conclusion

 (w_{pu}) 1,890 lbs < (P_{ts}) 4,903 lbs **OK**

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Wall Panel

Gillette 98" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward 93.9 psf = 0.6518 psi Away -84.4 psf = -0.5864 psi

Walls 3 & 4

Maximum Pressures Acting:

Toward 93.5 psf = 0.6491 psi Away -84.1 psf = -0.5841 psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

Maximum Downforce $(W_d) = 1,001$ lbs Wind Load Uplift Force $(W_{pq}) = 1,890$ lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width = 45.50 in Critical/Maximum Panel Height = 64.00 in

Section Properties

0.080 Aluminum Panel - 5052-H34

Cross Sectional Area (A) $= 3.79 \text{ in}^2$ Moment of Inertia - x (I_x) $= 0.052 \text{ in}^4$ Moment of Inertia - y $(I_{\nu}) =$ N/A in⁴ Section Modulus - x $(S_x) = 0.802 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x (r_{\times}) 0.112 in Radius of Gyration - y (r_v) N/a in Weight $= 0.026 \text{ lbs/in}^2$ (ω) Modulus of Elasticity = 1.02E+04 ksi (E) Safety Factor 1.67 $(\Omega) =$

Plastic Section Mod. - x (Q) = 1.67 Plastic Section Mod. - x (Z_x) = 0.13 Plastic Section Mod. - y (Z_y) = 0.13

Tensile Ultimate Strength $(F_{tu}) = 34 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 26 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 24 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 20 \text{ ksi}$

Wall Panel Calculations

Critical Wall Area

Area of Wall Panel (W) = $2.912.0 \text{ in}^2$

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Height - 1 Side = 4 5/16" - 18 Bolts Screws Along Width - 1 Side = 8 5/16" - 18 Bolts

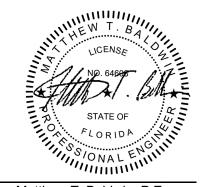
Total Mounting Screws = 24 5/16" - 18 Bolts

Grade 5 Ultimate Strength	=	150,000	psi
5/16" Bolt Nominal Diameter	=	0.255	in
5/16" Bolt Effective Area	=	0.051	in ²
5/16" Bolt Threads per Inch	=	18	
Washer Nominal Diameter	=	0.875	in
Roof Panel Tensile Ult. Strength	=	34	ksi
Roof Panel Tensile Yield Strength	=	26	ksi
Safety Factor	=	3	
Roof Panel Nominal Thickness	=	0.0800	in

Maximum Tensile Strength = Roof Frame

Maximum Tensile Strength = 388.7

Maximum Shear/Bearing Strength = 300.0


(Accounts for screw pull-over and pull-out strengths)

Max. Tensile Load per Bolt = 300.0

Max. Total Screws Tensile Strength $(P_{ts}) = 6.391$ lbs

Conclusion

 (w_{pu}) 1,898 lbs < (P_{ts}) 6,391 lbs <u>**OK**</u>

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Enclosure to Base

Gillette 98" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2	-	99.9	psf =	0.6935	psi
Wall 3 or 4	-	84.1	psf =	0.5841	psi
Roof Uplift	-	104.1	psf =	0.7230	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	99.9	psf =	0.6935	psi
Wall 3 or 4 -	47.0	psf =	0.3263	psi
Roof Uplift -	67.0	psf =	0.4651	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	121.7	psf =	0.8453	psi
Wall 1 or 2 -	84.4	psf =	0.5864	psi
Roof Uplift -	115.9	nsf =	0.8052	nsi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	121.7	psf =	0.8453	psi
Wall 1 or 2 -	47.3	psf =	0.3286	psi
Roof Uplift -	78.8	psf =	0.5474	psi

Seismic

Horizontal Seismic Force $(E_h) = 2$ Ibs

Enclosure Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	200	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	3440.5	in^2	
Walls 3/4 Area -	(w3) =	9568.3	in ²	
Roof Area -	(R) =	6471.9	in ²	

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	2,386	lbs
Wall 3 or 4 -	=	5,589	lbs
Roof Uplift -	=	4.679	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 -	=	2,386	lbs
Wall 3 or 4 -	=	3,122	lbs
Roof Uplift -	=	3,010	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	8,088	lbs
Wall 1 or 2 -	=	2,018	lbs
Roof Uplift -	=	5.211	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 -	=	8,088	lbs
Wall 1 or 2 -	=	1,131	lbs
Roof Uplift -	=	3,542	lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	2,874	lbs
Overturn on Walls 3/4	=	6.371	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2	=	2,039	lbs
Overturn on Walls 3/4	=	3 713	lhs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	8,484	lbs
Overturn on Walls 1/2	=	3.042	lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4	=	7,650	lbs
Overturn on Walls 1/2	=	1.972	lbs

Design Overturn Force $(O_E) = 8,484$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, bolt connections along the adjacent walls are neglected.

No. of Bolt Connections Along Wall 3/4 = 6 5/16" - 18 Bolts - Grade 18-8/S

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi

Grade 8.8 Nom. Tensile Stress = 112,500 psi (Includes Reduction Factor)

5/16" Bolt Effective Area = 0.051 in² Tensile Strength per Bolt = 2,873 lbs

Total Bolts Tensile Strength = 17,236 lbs

Conclusion

 (O_E) 8,484 lbs < (R_v) 17,236 lbs **OK**

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 98" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	99.9	psf =	0.6935	psi
Wall 3 or 4 -	84.1	psf =	0.5841	psi
Roof Uplift -	104.1	psf =	0.7230	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	99.9	psf =	0.6935	psi
Wall 3 or 4 -	47.0	psf =	0.3263	psi
Roof Unlift -	67.0	nsf =	0.4651	nsi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	121.7	psf =	0.8453	psi
Wall 1 or 2 -	84.4	psf =	0.5864	psi
Roof Uplift -	115.9	psf =	0.8052	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	121.7	psf =	0.8453	psi
Wall 1 or 2 -	47.3	psf =	0.3286	psi
Roof Uplift -	78.8	psf =	0.5474	psi

Seismic

Enclosure Horiz. Seismic Force	(EE_h)	=	2	lbs
Base/Tank Horiz. Seismic Force	(EB_h)	=	8	lbs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	350	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	3,776	in^2	(Includes Base/Tank Surface Area)
Walls 3/4 Area -	(w3) =	10,254	in^2	(Includes Base/Tank Surface Area)
Deef Asse	(D) _	6 470	. 2	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

```
Walls 1/2 - = 2,619 lbs
Wall 3 or 4 - = 5,989 lbs
Roof Uplift - = 4,679 lbs
```


Matthew T. Baldwin, P.E. Florida License #64608

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 - = 2,619 lbs Wall 3 or 4 - = 3,346 lbs Roof Uplift - = 3,010 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 - = 8,668 lbs Wall 1 or 2 - = 2,215 lbs Roof Uplift - = 5,211 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 - = 8,668 lbs Wall 1 or 2 - = 1,241 lbs Roof Uplift - = 3,542 lbs

Enclosure with Base/Tank Maximum Wind Force = 8,668 lbs Acting On Wall 3/4

Coefficient of Friction - Steel to Wet Concrete $(\mu_s) = 0.45$ Frictional Resisting Force (Total Weight x μ_s) = 158 Enclosure with Base/Tank Design Shear $(V_{EB}) = 8.511$

Enclosure With Base/Tank Overturn Forces (Inloudes Seismic)

Postive forces act upward

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = 2,930 lbs Overturn on Walls 3/4 = 7,031 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = 2,096 lbs Overturn on Walls 3/4 = 4,051 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 9,471 lbs Overturn on Walls 1/2 = 3,078 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 8,637 lbs Overturn on Walls 1/2 = 1,960 lbs

<u>Design Overturn Force</u> $(O_{EB}) = 9.471$ Ibs Acting On Wall 3/4

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4 = 6 Bolts 1/2" Set Bolt Anchors - Grade 5/Galv.

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Grade 5 **Ultimate Stress** = 120,000 psi Grade 5 Nom. Shear Stress = 48,000 psi Grade 5 Nom. Tensile Stress = 90,000 psi 1/2" Bolt Nominal Area in^2 0.159 Shear Strength per Bolt 3,816 lbs Tensile Strength per Bolt 7,155 lbs

Avail. Tensile Strength per Bolt = 1,781 lbs (Combined Tension and Shear)

Total Bolts Shear Strength $(R_{vb}) = 22,896$ lbs Total Bolts Tensile Strength $(R_{tb}) = 10,685$ lbs

Conclusion

Shear

 (V_{EB}) 8,511 lbs $< (R_{tb})$ 22,896 lbs <u>OK</u>

Tension

 (O_{EB}) 9,471 lbs < (R_{tb}) 10,685 lbs <u>OK</u>

