

For Gillette 216" Frame Gensets

May 5, 2025

216" LG Frame Genset Models:

PR-3500

SP-4000

SP-5000

SPVD-7000

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition

ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures

2020 Aluminum Association Design Manual

ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (9) per side (18) total

Project Information

Project Name/Model # - Gillette 216" Frame Gensets

Project Number

Project Description - Sound Attenuated Generator Enclosure

Project Location - Florida

Customer

Mounting Location - Ground

Enclosure Materials

Roof Beam - 11 Gauge CRS

Roof Panels - 0.080 Aluminum Panel - 5052-H34
Wall Panels - 0.080 Aluminum Panel - 5052-H34
Base Frame/Skid - Formed Aluminum/Steel 'C' Channel

Components

GenSet Manufacturer - Gillette Supported by -

GenSet Size and Model - PR-3500, SP-4000, SP-5000, SPVD-7000

Base - Formed Aluminum/Steel 'C' Channel

Fasteners/Hardware

		Bolt Size	Washer	Nut	Grade/Finish
Roof to Walls	-	5/16" - 18 Bolts	5/16" Washer	Nut Clip	Grade 18-8/SS
Wall to Wall	-	5/16" - 18 Bolts	5/16" Washer	Nut Clip	Grade 18-8/SS
Walls to Base	-	5/16" - 18 Bolts	5/16" Washer	Nut Clip	Grade 18-8/SS
Base to Slab/Tank	-	1/2" Set Bolt Anchors	Flat Washers	Hex Nuts	Grade 5/Galv.
				WILL N	NIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
				M. K.	CENO.

Specification Requirements

Wind Speed 200 mph **Exposure Category** D Risk Category Ш Ground Snow Load (P_g Fig 7.1) -0 psf Ice Thickness (t Fig 10-2 to 10-6) -0.25 in and Concurrent Wind Gust (V_c) -30 mph Seismic Site Class В

Matthew T. Baldwin, P.E. Florida License #64608

Base

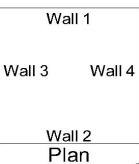
Page 1

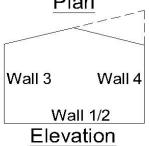
Enclosure Dimensions & Component Weights

Gillette 216" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)


<u>Wall</u>	Length (ft)		Height (ft)
1	6.86	Х	8.563
2	6.86	Х	8.563
3	19.51	Х	8.563
4	19.51	Х	8.563

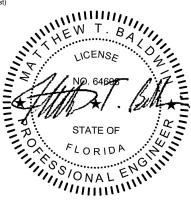

Base Dimensions

Width (Wall 1/2 Side) = 82 in Length (Wall 3/4 Side) = 214 in Height = 8 in

Roof/Eave Information

Roof Pitch Angle - (θ) = 0.0 Degrees Eave/Roof Height - h = 9.230

Structure Areas

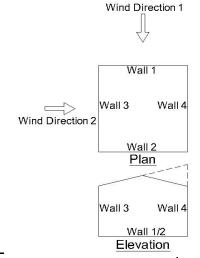

Walls 1/2 Area - (w1) = 63.3 ft^2 = 9,117 in^2 Walls 3/4 Area - (w3) = 180.1 ft^2 = 25,930 in^2 Roof Area - (R) = 133.8 ft^2 = 19,273 in^2

Base Side 1/2 (T1) = 656.0 in 2 Base Side 3/4 (T3) = 1,712.0 in 2

Component Weights (lightest setup for worst case)

Genset = 0 lbs (Varies, so will use zero to be conservative/most uplift to resist Enclosure = 300 lbs (Based on Aluminum to be conserative/most uplift to resist)

Base = 250 lbs (Based on Aluminum to be conserative/most uplift to resis


MWFRS Net Pressures

Gillette 216" Frame Gensets

Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

Enclosure Classification	-	Enclosed	t	
Exposure Category	-	D		
Basic Wind Speed	(V)	200	mph	
Importance Factor (Wind)	(I_w)	1.15		
Wind Directionality Factors	(K_d)	0.85		
Internal Pressure Coefficients	(GC_{pi})	± 0.18		
Velocity Pressure Exposure Coefficient	(K_z)	1.03		
Roof Mean Height Above Ground Level	(z)	9.90	ft	
Velocity Pressure	(q)	103.12	psf	

Wind Direction 1													
					Enclosure								
			Wall #				Roof						
		1 2	20.4	3&4		Par	allel to Ridg	je					
		1 2		304	(C _p)1	(Distance Fr	rom Windward	Edge)	(C _p)2				
		Windward	Leeward	Side	0 to 4.6	4.6 to 9.2	9.2 to 18.5	> 18.5	(Op)2				
Background Response Factor	(Q)	0.97	0.97	0.95			0.97						
Gust Effect Factors	(G)	0.91	0.91	0.90			0.91						
External Pressure Coefficients	(C _p)	0.80	-0.258	-0.70	-0.90	-0.90	-0.50	-0.3	-0.18				
Net Pressures with + (GC pi) - psf	(Net _{p+})	56.4	-42.7	-83.7	-102.9	-102.9	-65.4	-46.7	-35.4				
Net Pressures with - (GC pi) - psf	(Net p-)	93.5	-5.6	-46.5	-65.8	-65.8	-28.3	-9.5	1.7				

Wind Direction 2										
			Enclosure							
		Wall #			Roof - Normal To Ridge				Ridge	
		3 4 1&2		4 1&2						
		3	4	102	(C _p)1 (Distance From Windward Edge)		(C _p)2			
		Windward	Leeward	Side	0 to 4.6	> 4.6			(O _p)2	
Background Response Factor	(Q)	0.95	0.95	0.97			0.9	5		
Gust Effect Factors	(G)	0.90	0.90	0.91			0.90	0		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	55.8	-65.1	-84.2	-115.3	-83.7			-35.3	
Net Pressures with - (GC_{pi}) - psf	(Net _{p-})	93.0	-27.9	-47.0	-78.2	-46.5			1.8	

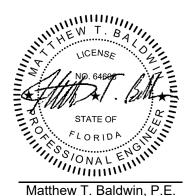
Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

Snow

Importance Factor (Snow)	(1 _s)	1.1
Exposure Factor	(C _e)	8.0
Thermal Factor	(C_t)	1.2
Slope Factor	(C _s)	1.0

Flat Roof Snow Load (p_s) 0 psf

Seismic


Importance Factor (Seismic)	(I_{sm})	1.25	
Mapped Acceleration Parameter	(S _s)	0.14	Figures 22-1 Thru 22-14
Mapped Acceleration Parameter	(S ₁)	0.07	Figures 22-1 Thru 22-14
Site Coefficient	(F_a)	1	
Site Coefficient	(F_{v})	1	
MCE Spectral Resp. Accel. Short Per.	(S_{MS})	0.140	
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07	
Design Spectral Accel. Short Period	(S _{DS})	0.093	
Design Spectral Accel. 1-s Period	(S_{D1})	0.04667	
Fundamental Period of Structure	(T_a)	0.100	sec
Long Period Transistion Period	(T_L)	8	sec Figure 22-15 Thru 22-20
Seismic Design Category	-	Α	
Total Effective Seismic Weight	$(W_{\it eff})$	3,036	lbs
Response Modification Coeficient	(R)	2	Table 12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table 12.2-1
Deflection Amplification Factor	(C_d)	2	Table 12.2-1
Seismic Response Coefficient	(C _s)	0.058	

Resultant Seismic Forces

Horizontal Seismic Load Effect - (E_h) Force at Base of Base = 0.0 kips Force at Top of Base = 0.00 kips Force at Top/Bottom of Enclosure = 0.003 kips

Force on Silencer = 0 kips

Vertical Seismic Load Effect $(E_v) = 0$ (Factor, Used With Deadweight in Load Combinations)

Florida License #64608

Structural Calculations - Roof

Gillette 216" Frame Gensets

Critical Loads & Pressures

Wind Pressures	Sno	ow Pr	<u>essu</u>	<u>re</u>		Seismic Load		
Downforce 1.821 psf = 0.01 psi Uplift -115.3 psf = -0.80 psi	0	psf	=	0.000	psi	Horizontal Vertical Factor	= =	3 lbs 0
Roof Live Load								

Downforce 20.0 psf = 0.1389 psi or 300 lbs Concentrated Load Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

11 Gauge CRS

Cross Sectional Area (A) $= 1.23 \text{ in}^2$ Moment of Inertia - x (I_x) $= 1.850 \text{ in}^4$ Moment of Inertia - y (I_y) N/A in⁴ Section Modulus - x $(S_x) = 1.340 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x (r_x) = 1.230 in Radius of Gyration - y (r_y) N/A in

Weight $(\omega) = 0.170 \text{ lbs/in}$ Modulus of Elasticity (E) = 2.90E+04 ksiSafety Factor $(\Omega) = 1.95$ Plastic Section Mod. - x $(Z_x) = 0.24$ Plastic Section Mod. - y $(Z_y) = 0.24$

Tensile Ultimate Strength $(F_{tu}) = 58 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 36 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 22 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 36 \text{ ksi}$

Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length (L_i) = 81.8 in Load Spanned Width (W_i) = 28.05 in

Interior Beam Calculated Forces

Distributed Loads

Weight of Beam $(\omega) = 0.029$ lbs/in Wind Load Downforce $(W_d) = 0.355$ lbs/in Wind Load Uplift Force $(W_u) = -22.457$ lbs/in

Shear Forces (Maximum at End)

Beam Weight Shear $(V_b) =$ 1.75 lbs Wind DownForce Shear $(V_{wd}) =$ 9.7 lbs Wind Uplift Shear $(V_{wu}) =$ -664.3 lbs **Total Shear Downward** = 11.5 lbs **Total Shear Upward** 662.5 lbs

 $(V_{bi}) =$ **Design Shear** 662.5 <u>lbs</u>

Stress Forces (Bending)

 $(M_b) =$ **Beam Weight Moment** 11 lb·in $(M_d) =$ Wind Downforce Moment 47 lb·in Wind Uplift Moment $(M_u) =$ -3,223 lb·in **Total Moments Downward** 59 **lb**·in **Total Moments Upward** 3,211 lb·in $(M_T) =$ **Design Moment** 3,211 lb·in $(\sigma_{bi}) =$ **Design Stress** 8,921 psi

Interior Beam Design Calculations

Allowable Shear Strength

 $(S_1) =$ Slenderness Limit 1 -20.08 $(S_2) =$ Slenderness Limit 2 102.40 Slenderness Ratio (S) =18.0 Allowable Shear Stress 9,856 psi

Allowable Shear Strength $(V_n) =$ 3,548 lbs

Conclusion

 $< (V_n)$ (V_{bi}) 663 lbs 3,548 lbs OK

Allowable Stresses For Tension And Compression (Bending)

Tension

Allowable Tensile Stress (F_t) 59,040 psi

Compression

 $(S_1) =$ Slenderness Limit 1 25.0 $(S_2) =$ Slenderness Limit 2 125.0 (S) =Slenderness Ratio 41.3

Allowable Compressive Stress $(F_c) = 13,121 \text{ psi}$

> Allowable Compressive Stress is the controlling The failure design Therefore, $(F_b) =$ 13,121 psi

Conclusion

 (σ_{bi}) 8,921 psi < (F_b) 13,121 psi **OK**

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift (R) 19,273 in² (not including discharge hood area)

Roof Uplift Calculated Forces

Roof Weight $(\omega_a) =$ 102 lbs Wind Load Uplift Force lbs $(w_{ru}) =$ -15,430 Total Roof Design Uplift $(W_{ru}) =$ -15,328

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Length - 1 Side 15 5/16" - 18 Bolts Screws Along Width - 1 Side 6 5/16" - 18 Bolts **Total Mounting Screws** 42 5/16" - 18 Bolts

Entire Roof Uplift Design Calculations

Grade 18-8/SS Ult. Strength 150,000 psi 5/16" Bolt Nominal Diameter 0.255 in 5/16" Bolt Effective Area 0.051 in² 5/16" Bolt Threads per Inch 18 = Washer Nominal Diameter 0.875 in Wall Panel Tensile Ult. Strength = 34 ksi Wall Panel Tensile Yield Strength 26 ksi Safety Factor 3 0.0800 Wall Panel Nominal Thickness in Maximum Tensile Strength 566.7 lbs Maximum Shear/Bearing Strength = 408.6 lbs Max. Tensile Load per Bolt 408.6 lbs

Max. Total Screws Tensile Strength $(P_{ts}) =$ 17,160 lbs

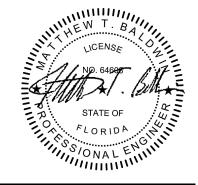
Conclusion

Distributed Loads

15,328 17,160 lbs <u>OK</u> (W_{ru}) lbs < (P_{ts})

Roof Panel Uplift Calculations

Roof Panel Critical Member Dimensions


Critical Panel Length $(L_p) = 58.10$ in $(W_p) = 82.00 \text{ in}$ Critical Panel Width

Roof Panel Uplift Calculated Forces

Wind Load Uplift Force $(W_{pu}) =$ 3,814.3 lbs

Mounting Hardware - Roof Panel to Roof Frame

Screws Along Length - 1 Side 5/16" - 18 Bolts - Grade 18-8/SS 4 Screws Along Width - 1 Side 5/16" - 18 Bolts - Grade 18-8/SS

Matthew T. Baldwin, P.E.

Florida License #64608

Roof Panel Uplift Design Calculations

Grade 18-8/SS Ult. Strength 150,000 psi 5/16" Bolt Nominal Diameter = 0.255 in 5/16" Bolt Effective Area 0.051 in^2 5/16" Bolt Threads per Inch 18 Washer Nominal Diameter 0.875 = in 34 Roof Panel Tensile Ult. Strength ksi Roof Panel Tensile Yield Strength = 26 ksi Safety Factor 3 **Roof Panel Nominal Thickness** 0.0800 in

Maximum Tensile Strength = $\frac{\text{Roof Frame}}{566.7}$ (Accounts for screw pull-over and pull-out strengths)

Maximum Shear/Bearing Strength = $\frac{1}{2}$ 408.6

Max. Total Screws Tensile Strength (P ts) = 6,537 lbs

Conclusion

 (w_{pu}) 3,814 lbs < (P_{ts}) 6,537 lbs **OK**

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Wall Panel

Gillette 216" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward 93.5 psf = 0.6495 psi Away -84.2 psf = -0.5844 psi

Walls 3 & 4

Maximum Pressures Acting:

Toward 93.0 psf = 0.6456 psi Away -83.7 psf = -0.5810 psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

Maximum Downforce $(W_d) = 2,779$ lbs Wind Load Uplift Force $(W_{pu}) = 3,814$ lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width = 46.00 in Critical/Maximum Panel Height = 92.50 in

Section Properties

0.080 Aluminum Panel - 5052-H34

Cross Sectional Area (A) $= 3.79 \text{ in}^2$ Moment of Inertia - x (I_x) $= 0.050 \text{ in}^4$ Moment of Inertia - y $(I_{\nu}) =$ N/A in⁴ Section Modulus - x $(S_x) = 0.800 \text{ in}^3$ Section Modulus - y $(S_v) =$ N/A in³ Radius of Gyration - x (r_{\times}) 0.110 in Radius of Gyration - y (r_v) N/a in Weight $= 0.026 \, lbs/in^2$ (ω) Modulus of Elasticity = 1.02E+04 ksi (E) Safety Factor 1.95 $(\Omega) =$ Plastic Section Mod. - $x (Z_x) =$ 0.13

Tensile Ultimate Strength $(F_{tu}) = 34 \text{ ksi}$ Tensile Yield Strength $(F_{ty}) = 26 \text{ ksi}$ Compressive Yield Strength $(F_{cy}) = 24 \text{ ksi}$ Shear Ultimate Strength $(F_{su}) = 20 \text{ ksi}$

Wall Panel Calculations

Plastic Section Mod. - y (Z_v) =

Critical Wall Area

Area of Wall Panel (W) = $4,255.0 \text{ in}^2$

Mounting Hardware - Roof Frame to Wall Panels

Screws Along Height - 1 Side = 3 5/16" - 18 Bolts Screws Along Width - 1 Side = 6 5/16" - 18 Bolts

0.13

Total Mounting Screws = 18 5/16" - 18 Bolts

Grade 5 Ultimate Strength	=	150,000	psi
5/16" Bolt Nominal Diameter	=	0.255	in
5/16" Bolt Effective Area	=	0.051	in ²
5/16" Bolt Threads per Inch	=	18	
Washer Nominal Diameter	=	0.875	in
Roof Panel Tensile Ult. Strength	=	34	ksi
Roof Panel Tensile Yield Strength	=	26	ksi
Safety Factor	=	3	
Roof Panel Nominal Thickness	=	0.0800	in

Maximum Tensile Strength = Roof Frame

Maximum Tensile Strength = 388.7

Maximum Shear/Bearing Strength = 300.0

(Accounts for screw pull-over and pull-out strengths)

Max. Tensile Load per Bolt = 300.0

Max. Total Screws Tensile Strength $(P_{ts}) = 4,793$ lbs

Conclusion

 (w_{pu}) 2,763 lbs < (P_{ts}) 4,793 lbs **OK**

Matthew T. Baldwin, P.E. Florida License #64608

Structural Calculations - Enclosure to Base

Gillette 216" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	99.1	psf =	0.6883	psi
Wall 3 or 4 -	83.7	psf =	0.5810	psi
Roof Uplift -	102.9	psf =	0.7145	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	99.1	psf =	0.6883	psi
Wall 3 or 4 -	46.5	psf =	0.3232	psi
Roof Uplift -	65.8	psf =	0.4567	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	120.9	psf =	0.8396	psi
Wall 1 or 2 -	84.2	psf =	0.5844	psi
Roof Uplift -	115.3	nsf =	0.8006	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	120.9	psf =	0.8396	psi
Wall 1 or 2 -	47.0	psf =	0.3266	psi
Roof Uplift -	78.2	psf =	0.5428	psi

Seismic

Horizontal Seismic Force $(E_h) = 3$ lbs

Enclosure Critical Dimensions & Weights

Total Enclosure Weight	(W_t)	=	300.0	lbs	(Includes all components)
Walls 1/2 Area -	(w1)	=	9117.4	in^2	
Walls 3/4 Area -	(w3)	=	25930.2	in ²	
Roof Area -	(R)	=	19272.8	in ²	

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	6,276	lbs
Wall 3 or 4 -	=	15,066	lbs
Roof Uplift -	=	13.771	lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 -	=	6,276	lbs
Wall 3 or 4 -	=	8,381	lbs
Roof Uplift -	=	8,802	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -21,772 lbs Wall 1 or 2 -= 5,328 lbs Roof Uplift -15,430 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 -21,772 lbs Wall 1 or 2 -2,978 lbs Roof Uplift -10,461 lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = 8,220 lbs Overturn on Walls 3/4 = 16,870 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = 5,735 lbs Overturn on Walls 3/4 = 9,889 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 22,211 lbs Overturn on Walls 1/2 = 8,825 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 19,727 lbs Overturn on Walls 1/2 = 5,785 lbs

 $(O_E) = 22,211$ lbs Acting On Wall 3/4 Design Overturn Force

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, bolt connections along the adjacent walls are neglected.

No. of Bolt Connections Along Wall 3/4 = 8 5/16" - 18 Bolts - Grade 18-8/S

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength = 150,000 psi

Grade 8.8 Nom. Tensile Stress = 112,500 psi (Includes Reduction Factor)

 in^2 5/16" Bolt Effective Area 0.051 Tensile Strength per Bolt 2,873 lbs

Total Bolts Tensile Strength = 22,982 lbs

Conclusion

 (O_F) 22.211 lbs 22,982 lbs $< (R_{\nu})$

OK Page 6 - 2

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 216" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

```
Walls 1 & 2 - 99.1 psf = 0.6883 psi
Wall 3 or 4 - 83.7 psf = 0.5810 psi
Roof Uplift - 102.9 psf = 0.7145 psi
```

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	99.1	psf =	0.6883	psi
Wall 3 or 4 -	46.5	psf =	0.3232	psi
Roof Unlift -	65.8	nsf =	0.4567	nsi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	120.9 psf =	0.8396	psi
Wall 1 or 2 -	84.2 psf =	0.5844	psi
Roof Uplift -	115.3 psf =	0.8006	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	120.9	psf =	0.8396	psi
Wall 1 or 2 -	47.0	psf =	0.3266	psi
Roof Uplift -	78.2	psf =	0.5428	psi

Seismic

Enclosure Horiz. Seismic Force	(EE_h)	=	3	lbs
Base/Tank Horiz. Seismic Force	(EB_h)	=	30	lbs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight	$(VV_t) =$	550	lbs	(Includes all components)
Walls 1/2 Area -	(w1) =	9,773	in ²	(Includes Base/Tank Surface Area)
Walls 3/4 Area -	(w3) =	27,642	in ²	(Includes Base/Tank Surface Area)
Roof Area -	(R) =	19,273	in^2	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

```
Walls 1/2 - = 6,727 lbs
Wall 3 or 4 - = 16,061 lbs
Roof Uplift - = 13,771 lbs
```


Matthew T. Baldwin, P.E. Florida License #64608

Net Forces with - Internal Pressure (-Gcpi)

Walls 1/2 - = 6,727 lbs Wall 3 or 4 - = 8,934 lbs Roof Uplift - = 8,802 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 - = 23,209 lbs Wall 1 or 2 - = 5,711 lbs Roof Uplift - = 15,430 lbs

Net Forces with - Internal Pressure (-Gcpi)

Walls 3/4 - = 23,209 lbs Wall 1 or 2 - = 3,192 lbs Roof Uplift - = 10,461 lbs

Enclosure with Base/Tank Maximum Wind Force = 23,209 lbs Acting On Wall 3/4

Coefficient of Friction - Steel to Wet Concrete $(\mu_s) = 0.45$ Frictional Resisting Force (Total Weight x μ_s) = 248 Enclosure with Base/Tank Design Shear $(V_{EB}) = 22,962$

Enclosure With Base/Tank Overturn Forces (Inloudes Seismic)

Postive forces act upward

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2 = 8,319 lbs Overturn on Walls 3/4 = 18,202 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 1/2 = 5,835 lbs Overturn on Walls 3/4 = 10,578 lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4 = 24,188 lbs Overturn on Walls 1/2 = 8,891 lbs

Net Forces with - Internal Pressure (-Gcpi)

Overturn on Walls 3/4 = 21,704 lbs Overturn on Walls 1/2 = 5,768 lbs

<u>Design Overturn Force</u> $(O_{EB}) = 24,188$ Ibs Acting On Wall 3/4

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4 = 9 Bolts 1/2" Set Bolt Anchors - Grade 5/Galv.

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Grade 5 **Ultimate Stress** = 120,000 psiGrade 5 Nom. Shear Stress = 48,000 psi Grade 5 Nom. Tensile Stress = 90,000 psi 1/2" Bolt Nominal Area in^2 0.159 Shear Strength per Bolt 3,816 lbs Tensile Strength per Bolt 7,155 lbs

Avail. Tensile Strength per Bolt 2,862 lbs (Combined Tension and Shear)

Total Bolts Shear Strength $(R_{vb}) =$ 34,344 lbs Total Bolts Tensile Strength $(R_{tb}) =$ 25,758 lbs

Conclusion

Shear

 $22,962 \text{ lbs} < (R_{tb})$ 34,344 lbs (V_{EB})

OK

Tension

 $24,188 \text{ lbs} < (R_{tb})$ 25,758 lbs <u>OK</u> (O_{EB})

