

ENGINEERING STRUCTURAL CALCULATIONS For Gillette 280" Frame Gensets

May 20, 2025

280" LG Frame Genset Models

Location: Florida

Designed in compliance with: 2023 Florida Building Code, 8th Edition ASCE 7 - 22 Minimum Design Loads for Buildings and Other Structures 2020 Aluminum Association Design Manual ANSI/AISC 360-22 - Specification for Structural Steel Buildings

Anchoring: 1/2" Bolt/Anchors - Minimum (6) per side (12) total

This item has been digitally signed and sealed by Matthew T. Baldwin, P.E. on the date adjacent to the seal. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Project Information

Project Name/Model # Ρ

Project Number
Project Description
Project Location
Customer

Mounting Location

- Gillette 280" Frame Gensets
- Sound Attenuated Generator Enclosure
- Florida
- Ground

Enclosure Materials

- Roof Beam **Roof Panels** Wall Panels Base Frame/Skid
- 11 Gauge CRS
- 0.102 Aluminum Panel 5052-H34
- 0.102 Aluminum Panel 5052-H34
- Formed Aluminum/Steel 'C' Channel

Components

GenSet Manufacturer GenSet Size and Model

- Gillette
- 280" Frame Gensets

Base

- Formed Aluminum/Steel 'C' Channel

Fasteners/Hardware

_		Bolt Size	Washer	Nut	Grade/Finish
Roof to Walls-Wall to Wall-Walls toBaseBase to Slab/Tank-	5/16 5/16	6" - 18 Bolts 6" - 18 Bolts 6" - 18 Bolts et Bolt Anchors	5/16" Washer 5/16" Washer 5/16" Washer Flat Washers	Nut Clip Nut Clip Nut Clip Hex Nuts	Grade 18-8/SS Grade 18-8/SS Grade 18-8/SS Grade 5/Galv.
Specification Requirements				ET.	T. BA CENSE
Wind Speed - Exposure Category -	-	mph			
Risk Category - Ground Snow Load (P_g Fig 7.1) - Ice Thickness (t Fig 10-2 to10-6) - and Concurrent Wind Gust (V_c) - Seismic Site Class	0.25	psf in mph		Matthew	

Florida License #64608

Supported by -

Base

Enclosure Dimensions & Component Weights

Gillette 280" Frame Gensets

Roof Style- Flat

Enclosure Dimensions (ft)

<u>Wall</u>	Length (ft)		<u>Height (ft)</u>
1	8	х	9.4
2	8	х	9.4
3	23.333	х	9.4
4	23.333	х	9.4

Base Dimensions

Width (Wall 1/2 Side)	=	96	in
Length (Wall 3/4 Side)	=	280	in
Height	=	8	in

Roof/Eave Information

Roof Pitch Angle -	<i>(θ)</i> =	$(\theta) = 0.0$			
Eave/Roof Height -	h =	10.067			

Structure Areas

Walls 1/2 Area Walls 3/4 Area Roof Area	-	(w3) =	80.5 234.9 186.7	$ft^2 =$	33,824	in ²
Base Side 1/2 Base Side 3/4		· · ·	768.0 2,240.0			

Component Weights (lightest setup for worst case)

Genset Enclosure	=	7,500 1.000	lbs Ibs	(conserative/most uplift to resist)	ANNIHU.
Base	_	450	lbs	(Based on Aluminum to be conserative/most uplift to resist)	HEW T BA
Dase	-	430	IDS	(Based on Aluminum to be conserative/most uplift to resist)	LICENSE

STATE OF ΟΝΑ Matthew T. Baldwin, P.E.

Florida License #64608

MWFRS Net Pressures

Gillette 280" Frame Gensets

Wind

Analytical Procedure method and Load Combinations from ASCE 7 are utilized in these calculations.

Enclosure Classification	-	Enclosed	ł
Exposure Category	-	D	
Basic Wind Speed	(V)	200	mph
Importance Factor (Wind)	(I_w)	1.15	
Wind Directionality Factors	(K _d)	0.85	
Internal Pressure Coefficients	(GC _{pi})	± 0.18	
Velocity Pressure Exposure Coefficient	(K_z)	1.03	
Roof Mean Height Above Ground Level	(Z)	10.73	ft
Velocity Pressure	(q)	103.12	psf

Wind Direction 1

					Enclos	ure			
			Wall #		Roof				
		1	1 2 3&4			Par	allel to Ridg	е	
		1	2	504	$(C_p)1$ (Distance From Windward Edge)			Edge)	(C _p)2
		Windward	Leeward	Side	0 to 5.0	5.0 to 10.1	10.1 to 20.1	> 20.1	(<i>Op</i>)2
Background Response Factor	(Q)	0.96	0.96	0.95			0.96		
Gust Effect Factors	(G)	0.91	0.91	0.90			0.91		
External Pressure Coefficients	(C _p)	0.80	-0.254	-0.70	-0.90	-0.90	-0.50	-0.3	-0.18
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	56.3	-42.3	-83.5	-102.8	-102.8	-65.4	-46.6	-35.4
Net Pressures with - (GC _{pi}) - psf	(Net _{p-})	93.4	-5.2	-46.4	-65.7	-65.7	-28.2	-9.5	1.7

Wind Direction 2

		Enclosure								
			Wall #			Roo	f - Norma	al To R	Ridge	
		3 4		1&2						
		5	7	102	(C _p)1	(Distance	From Windward	d Edge)	(C _p)2	
		Windward	Leeward	Side	0 to 5.0	> 5.0			$(O_p)^2$	
Background Response Factor	(Q)	0.95	0.95	0.96			0.9	5		
Gust Effect Factors	(G)	0.90	0.90	0.91			0.9	0		
External Pressure Coefficients	(C _p)	0.80	-0.5	-0.70	-1.04	-0.70			-0.18	
Net Pressures with + (GC_{pi}) - psf	(Net _{p+})	55.7	-65.0	-84.1	-115.1	-83.5			-35.3	
Net Pressures with - (GC pi) - psf	(Net _{p-})	92.8	-27.8	-46.9	-77.9	-46.4			1.9	

Plus and minus signs signify pressures acting toward or away from the surfaces, respectively.

CENSE ROARSSIONAL WT.Ba

Matthew T. Baldwin, P.E. Florida License #64608

Elevation

Wind Direction 1

<u>Snow</u>

Importance Factor (Snow) Exposure Factor Thermal Factor Slope Factor	(I _s) (C _e) (C _t) (C _s)	1.1 0.8 1.2 1.0	
Flat Roof Snow Load	(p _s)	0	psf
<u>Seismic</u>			
Importance Factor (Seismic)	(I _{sm})	1.25	
Mapped Acceleration Parameter	(S _s)	0.14	Figures 22-1 Thru 22-14
Mapped Acceleration Parameter	(S1)	0.07	Figures 22-1 Thru 22-14
Site Coefficient	(F _a)	1	
Site Coefficient	(F_v)	1	
MCE Spectral Resp. Accel. Short Per.	(S _{MS})	0.140	
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07	

······································	(-103)	0.110	
MCE Spectral Resp. Accel. 1-s Period	(S _{M1})	0.07	
Design Spectral Accel. Short Period	(S _{DS})	0.093	
Design Spectral Accel. 1-s Period	(S _{D1})	0.04667	
Fundamental Period of Structure	(T _a)	0.107	sec
Long Period Transistion Period	(T_L)	8	sec Figure 22-15 Thru 22-20
Seismic Design Category	-	Α	
Total Effective Seismic Weight	(W_{eff})	12,866	lbs
Response Modification Coeficient	(R)	2	Table 12.2-1
System Overstrength Factor	(Ω_{o})	2.5	Table 12.2-1
Deflection Amplification Factor	(C _d)	2	Table 12.2-1
Seismic Response Coefficient	(C _s)	0.058	

Resultant Seismic Forces

Horizontal Seismic Load Effect	-	(E _h)	
Force at Base of Base	=	0.1	kips
Force at Top of Base	=	0.1	kips
Force at Top/Bottom of Enclosure	=	0.01	kips
Force on Silencer	=	0	kips
Vortical Sciemic Load Effect (E.)		0	(Fastar Had

Vertical Seismic Load Effect $(E_v) = 0$ (Factor, Use

(Factor, Used With Deadweight in Load Combinations)

Structural Calculations - Roof

Gillette 280" Frame Gensets

Critical Loads & Pressures

Wind Pressures

Downforce	1.86	psf	=	0.01	psi
Uplift	-115.1	psf	=	-0.80	psi

Roof Live Load

Downforce 20.0 psf 0.1389 = psi or 300 lbs Concentrated Load Pressures & loads are the numerical maximums to be analyzed for shear, bending tension, and compression.

Section Properties

11 Gauge CRS

Cross Sectional Area Moment of Inertia - x Moment of Inertia - y Section Modulus - x Section Modulus - y Radius of Gyration - x Radius of Gyration - y	$(A) (I_x) (I_y) (S_x) (S_y) (r_x) (r_y) \\$	= = =	1.14 1.092 N/A 1.127 N/A 0.978 N/A	in ⁴ in ⁴ in ³ in ³		
Weight Modulus of Elasticity Safety Factor Plastic Section Mod x Plastic Section Mod y Tensile Ultimate Strength Tensile Yield Strength Compressive Yield Stren Shear Ultimate Strength			0.120 2.90E 1.9 0.2 (F _{tu}) (F _{ty}) (F _{cy}) (F _{su})	+04 5 4 4 = =	ksi 58 36 22	ksi

Roof Frame Calculations

Member Designed for Forces Acting on the Strong Axis

Interior Beam Critical Member Dimensions

Interior Beam Length	(L _i)	=	86	in
Load Spanned Width	(W_i)	=	36	in

Interior Beam Calculated Forces

Distributed Loads

Weight of Beam	(<i>w</i>)	=	0.029	lbs/in
Wind Load Downforce	(W _d)	=	0.465	lbs/in
Wind Load Uplift Force	(w _u)	=	-28.765	lbs/in

Matthew T. Baldwin, P.E. Florida License #64608

0

0.000

psi

Seismic Load

Horizontal Vertical Factor

10 lbs 0

=

=

Shear Forces (Maximum at End)

Beam Weight Shear Wind DownForce Shear Wind Uplift Shear	$(V_{wd}) =$		lbs lbs lbs
Total Shear Downward Total Shear Upward	= =	11.5 662.5	lbs lbs
<u>Design Shear</u>	$(V_{bi}) =$	<u>662.5</u>	lbs
Stress Forces (Bending)			
Beam Weight Moment Wind Downforce Moment Wind Uplift Moment	$(M_b) = (M_d) = (M_u) =$		lb∙in Ib∙in Ib∙in
Total Moments Downwa Total Moments Upward	rd = =	00	lb∙in Ib∙in
Design Moment	$(M_T) =$	3,211	lb∙in
<u>Design Stress</u>	$(\sigma_{bi}) =$	<u>8,921</u>	psi
Interior Beam Design (Calculatio	ns	
Allowable Shear Strength			
Slenderness Limit 1 Slenderness Limit 2 Slenderness Ratio	$(S_1) = (S_2) = (S) =$	102.40	
Allowable Shear Stress Allowable Shear Strength		9,856 3,548	psi Ibs
<u>Conclusion</u>			
(V _{bi}) 663 lbs	$< (V_n)$	3,548	lbs <u>OK</u>
Allowable Stresses For Tens	ion And Con	npression (E	Bending)
<u>Tension</u>			
Allowable Tensile Stress		$(F_t) =$	54,778 psi
<u>Compression</u>			
Slenderness Limit 1 Slenderness Limit 2 Slenderness Ratio	$(S_1) = (S_2) = (S) =$	125.0	
Allowable Compressive Str	ess	$(F_{c}) =$	13,121 psi
The <u>Al</u>	lowable Co	ompressive	e Stress is the controlling
Therefore,	(F _b) =	<u>13,121</u>	psi failure design
Conclusion			
$(\sigma_{\it bi})$ 8,921 psi	< (F _b)	13,121	psi <u>OK</u>

Matthew T. Baldwin, P.E. Florida License #64608

Entire Roof Uplift Calculations

Roof Area

Area of Roof Subjected to Uplift (R) = 19,968 in² (not including discharge hood area)

Roof Uplift Calculated Forces

Roof Weight (ω_a) Wind Load Uplift Force (w_{ru})		102 -15,955	lbs lbs				
Total Roof Design Uplift (W_{ru})	=	<u>-15,853</u>	lbs				
Mounting Hardware - Roof Frame to Wall Panels							
Screws Along Length - 1 Side Screws Along Width - 1 Side	=	18 5	5/16" - 18 Bolts 5/16" - 18 Bolts				
Total Mounting Screws	=	46	5/16" - 18 Bolts				
Entire Roof Uplift Design Cal	cula	ations					
Grade 18-8/SS Ult. Strength 5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch Washer Nominal Diameter Wall Panel Tensile Ult. Strength Wall Panel Tensile Vield Strength Safety Factor Wall Panel Nominal Thickness Maximum Tensile Strength Maximum Shear/Bearing Strength Max. Tensile Load per Bolt <u>Max. Total Screws Tensile Strengt</u>		$\begin{array}{r} 150,000\\ 0.255\\ 0.051\\ 18\\ 0.875\\ 34\\ 26\\ 3\\ 0.0800\\ 566.7\\ 408.6\\ 408.6\\ (P_{ts}) = \end{array}$					
<i>(W_{ni})</i> 15,853 lbs	<	(P_{ts})	18,794 lbs <u>OK</u>				
Roof Panel Uplift Calcula	atic	ons					
Roof Panel Critical Member D							
Critical Panel Length (L_p) Critical Panel Width (W_p)	=	72.00 in 96.00 in					
Roof Panel Uplift Calculated	For	<u>ces</u>					
Distributed Loads							
Wind Load Uplift Force (w_{pu})	=	<u>5,522.9</u>	lbs				
Mounting Hardware - Roof Panel to R	loof	<u>Frame</u>					
Screws Along Length - 1 Side Screws Along Width - 1 Side	= =	4 5	5/16" - 18 Bolts 5/16" - 18 Bolts				

Matthew T. Baldwin, P.E. Florida License #64608

- Grade 18-8/SS

- Grade 18-8/SS

Roof Panel Uplift Design Calculations

Grade 18-8/SS Ult. Strength 5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch Washer Nominal Diameter		150,000 0.255 0.051 18 0.875	psi in in ² in		
Roof Panel Tensile Ult. Strength	=	34	ksi		
Roof Panel Tensile Yield Strength	=	26	ksi		
Safety Factor	=	3			
Roof Panel Nominal Thickness	=	0.1020	in		
		Roof Frame	2		(Accounts for screw
Maximum Tensile Strength	=	566.7			pull-over and pull-out strengths)
Maximum Shear/Bearing Strength	=	408.6			suchguisj
Max. Tensile Load per Screw	=	408.6			
<u>Max. Total Screws Tensile Strength</u> (P_{ts}) = <u>7.354</u> lbs					
<u>Conclusion</u>					
(w _{pu}) 5,523 lbs < (P ₁	ts)	7,354	lbs <u>(</u>	<u> </u>	

Structural Calculations - Wall Panel

Gillette 280" Frame Gensets

Critical Loads & Pressures

Walls 1 & 2

Maximum Pressures Acting:

Toward	93.4	psf	=	0.6488	psi
Away	-84.1	psf	=	-0.5838	psi

Walls 3 & 4

Maximum Pressures Acting:

Toward	92.8	psf	=	0.6444	psi
Away	-83.5	psf	=	-0.5800	psi

Roof Forces on Critical Panel (From Roof Frame Calculations)

Maximum Downforce	$(W_d) =$	2,875	lbs
Wind Load Uplift Force	$(w_{pu}) =$	5,523	lbs

Pressures and weights are the numerical maximums to be analyzed for shear, tension, and compression.

Critical Wall Panel Dimensions

Critical/Maximum Panel Width	=	90.00	in
Critical/Maximum Panel Height	=	56.00	in

Section Properties

0.102 Aluminum Panel - 5052-H34

Cross Sectional Area	(A)	_	5.71	:2		
	• •					
Moment of Inertia - x	(1 _x)	=	0.005	in⁴		
Moment of Inertia - y	(I_y)	=	N/A	in ⁴		
Section Modulus - x	(S _x)	=	0.097	in ³		
Section Modulus - y	(S _y)	=	N/A	in ³		
Radius of Gyration - x	(r _x)	=	0.029	in		
Radius of Gyration - y	(r _y)	=	N/a	in		
Weight	(@)	=	0.026	lbs/	in ²	
Modulus of Elasticity	(E)	=	1.02E	+04	ksi	
Safety Factor	(Ω)	=	1.9	5		
Plastic Section Mod x	(Z_x)	=	0.1	3		
Plastic Section Mod y	(Z_y)	=	0.1	3		
Tensile Ultimate Strength	۰ ۱		(F _{tu})	=	34	ksi
Tensile Yield Strength			(F_{ty})	=	26	ksi
Compressive Yield Stren	gth		(F_{cy})	=	24	ksi
Shear Ultimate Strength			(F _{su})	=	20	ksi
Wall Papel Calculat	ione					

Wall Panel Calculations

Critical Wall Area

Area of Wall Panel		(W)	=	5,040.0 in ²	
Mounting Hardware - Roof Frame to Wall Panels					
Screws Along Height - 1 Side Screws Along Width - 1 Side	= =	4 3		5/16" - 18 Bolts 5/16" - 18 Bolts	
Total Mounting Screws	=	14		5/16" - 18 Bolts	

Grade 5 Ultimate Strength 5/16" Bolt Nominal Diameter 5/16" Bolt Effective Area 5/16" Bolt Threads per Inch	= = =	150,000 0.255 0.051 18	psi in in ²	
Washer Nominal Diameter	=	0.875	in	
Roof Panel Tensile Ult. Strength	=	34	ksi	
Roof Panel Tensile Yield Strength	=	26	ksi	
Safety Factor	=	3		
Roof Panel Nominal Thickness	=	0.1020	in	
		Roof Frame	÷	
Maximum Tensile Strength	=	233.0		(Accounts for screw pull-over and pull-out strengths)
Maximum Shear/Bearing Strength	=	366.0		
Max. Tensile Load per Bolt	=	233.0		
Max. Total Screws Tensile Strengt	<u>h</u>	$(P_{ts}) =$	<u>3,562</u>	lbs

 (w_{pu}) 3,270 lbs < (P_{ts}) 3,562 lbs <u>OK</u>

Structural Calculations - Enclosure to Base

Gillette 280" Frame Gensets

Critical Pressures & Loads

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	98.6	psf =	0.6850	psi
Wall 3 or 4 -	83.5	psf =	0.5800	psi
Roof Uplift -	102.8	psf =	0.7138	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	98.6	psf =	0.6850	psi
Wall 3 or 4 -	46.4	psf =	0.3221	psi
Roof Uplift -	65.7	psf =	0.4560	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	120.6	psf =	0.8377	psi
Wall 1 or 2 -	84.1	psf =	0.5838	psi
Roof Uplift -	115.1	psf =	0.7990	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4	-	120.6	psf =	0.8377	psi
Wall 1 or 2	-	46.9	psf =	0.3260	psi
Roof Uplift	-	77.9	psf =	0.5412	psi

Seismic

Horizontal Seismic Force $(E_h) = 10$ Ibs

Enclosure Critical Dimensions & Weights

Total Enclosure	Weight	(W_t)	=	8,500.0	lbs
Walls 1/2 Area	-	(w1)	=	11596.8	in ²
Walls 3/4 Area	-	(w3)	=	33823.5	in ²
Roof Area	-	(R)	=	26879.6	in ²

Enclosure Calculated Forces

Maximum Wind Load Forces on Walls

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	7,944	lbs
Wall 3 or 4 -	=	19,616	lbs
Roof Uplift -	=	19,186	lbs

(Includes all components)

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2	-	=	7,944	lbs
Wall 3 or 4	-	=	10,896	lbs
Roof Uplift	-	=	12,256	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	28,333	lbs
Wall 1 or 2 -	=	6,770	lbs
Roof Uplift -	=	21,478	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	28,333	lbs
Wall 1 or 2 -	=	3,780	lbs
Roof Uplift -	=	14,548	lbs

Enclosure Overturn Forces (Includes Seismic)

(Postive forces act upward, negative forces act downward)

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	7,057	lbs	
Overturn on Walls 3/4	=	17,685	lbs	
		(a		
Net Forces with - Internal Pre	ssure	e(-Gcpi)		
Overturn on Walls 1/2	=	3,592	lbs	
Overturn on Walls 3/4	=	8,734	lbs	
Wind Direction 2				

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	24,315	lbs
Overturn on Walls 1/2	=	7,949	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 3/4	=	20,850	lbs
Overturn on Walls 1/2	=	3,840	lbs

<u>Design Overturn Force</u> $(O_E) = 24,315$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure to Base/Tank or Pad

To be conservative, bolt connections along the adjacent walls are neglected. No. of Bolt Connections Along Wall 3/4 = 115/16" - 18 Bolts - Grade 18-8/S

Enclosure Overturn Design Calculations

Grade 18-8 Ultimate Strength =	150,000	psi
Grade 8.8 Nom. Tensile Stress =	112,500	psi (Includes Reduction Factor)
5/16" Bolt Effective Area =	0.051	in ²
Tensile Strength per Bolt =	2,873	lbs
Total Bolts Tensile Strength	=	31,600 lbs

Conclusion

 (O_E) 24,315 lbs < (R_v) 31,600 lbs

OK Page 6 - 2

Structural Calculations - Enclosure With Base/Tank to Pad

Gillette 280" Frame Gensets

Critical Wind Load Pressures

To determine maximum moment forces, pressures are algebraically combined relative to toward or away forces (+ & -) and each wind direction.

Wind Direction 1

To be conservative, roof downforce is neglected.

Net Pressures with + Internal Pressure(+Gcpi)

Walls 1 & 2 -	98.6	psf =	0.6850	psi
Wall 3 or 4 -	83.5	psf =	0.5800	psi
Roof Uplift -	102.8	psf =	0.7138	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 1 & 2 -	98.6	psf =	0.6850	psi
Wall 3 or 4 -	46.4	psf =	0.3221	psi
Roof Uplift -	65.7	psf =	0.4560	psi

Wind Direction 2

Net Pressures with + Internal Pressure(+Gcpi)

Walls 3 & 4 -	120.6	psf =	0.8377	psi
Wall 1 or 2 -	84.1	psf =	0.5838	psi
Roof Uplift -	115.1	psf =	0.7990	psi

Net Pressures with - Internal Pressure(-Gcpi)

Walls 3 & 4 -	120.6	psf =	0.8377	psi
Wall 1 or 2 -	46.9	psf =	0.3260	psi
Roof Uplift -	77.9	psf =	0.5412	psi

<u>Seismic</u>

Enclosure Horiz. Seismic Force $(EE_h) = 10$ Ibs Base/Tank Horiz. Seismic Force $(EB_h) = 129$ Ibs

Enclosure With Base/Tank Critical Dimensions & Weights

Total Enclosure Weight	$(W_t) =$	8,950	lbs	(Includes all components)
Walls 1/2 Area -				(Includes Base/Tank Surface Area)
Walls 3/4 Area -	(w3) =	36,064	in ²	(Includes Base/Tank Surface Area)
Roof Area -	(R) =	26,880	in ²	

Enclosure With Base/Tank Calculated Forces

Maximum Wind Shear Forces on Walls Including Base/Tank

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Walls 1/2 -	=	8,470	lbs
Wall 3 or 4 -	=	20,915	lbs
Roof Uplift -	=	19,186	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 1/2 -	=	8,470	lbs
Wall 3 or 4 -	=	11,618	lbs
Roof Uplift -	=	12,256	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Walls 3/4 -	=	29,001	lbs
Wall 1 or 2 -	=	7,219	lbs
Roof Uplift -	=	21,478	lbs

Net Forces with - Internal Pressure(-Gcpi)

Walls 3/4 -	=	29,001	lbs
Wall 1 or 2 -	=	4,031	lbs
Roof Uplift -	=	14,548	lbs

Enclosure with Base/Tank Maximum Wind Force			29,001	lbs Acting On Wall 3/4
Coefficient of Friction - Steel to Wet Concrete Frictional Resisting Force (Total Weight x $\mu_{s})$	(μ _s)	= =	0.45 4,028	
Enclosure with Base/Tank Design Shear	(V _{EB})	=	<u>24,973</u>	

Enclosure With Base/Tank Overturn Forces (Inlcudes Seismic)

Postive forces act upward

Wind Direction 1

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 1/2	=	7,074	lbs
Overturn on Walls 3/4	=	19,173	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 1/2	=	3,610	lbs
Overturn on Walls 3/4	=	9,471	lbs

Wind Direction 2

Net Forces with + Internal Pressure(+Gcpi)

Overturn on Walls 3/4	=	25,743	lbs
Overturn on Walls 1/2	=	7,932	lbs

Net Forces with - Internal Pressure(-Gcpi)

Overturn on Walls 3/4	=	22,278	lbs
Overturn on Walls 1/2	=	3,734	lbs

<u>Design Overturn Force</u> $(O_{EB}) = 25,743$ lbs Acting On Wall 3/4

Mounting Hardware - Enclosure With Base/Tank to Pad

No. of Bolt Connections Along Wall 3/4 =	= <u>6</u>	Bolts	1/2" Set Bolt Anchors	- Grade 5/Galv.
--	------------	-------	-----------------------	-----------------

Enclosure With Base/Tank Design Calculations

Mounting Hardware - Shear and Tension

Grade 5 Grade 5 1/2" Bolt N Shear Stre		Stress Stress	= = = =	0.100	psi psi in ² Ibs	
	Shear Streng Tensile Stren			(R _{vb}) = (R _{tb}) =		
Conclusion						
Shear						
(V _{EB})	24,973 lbs	< (R_t)	_b)	25,186	lbs	<u>0K</u>
Tension						
(O _{EB})	25,743 lbs	< (R_t)	_b)	42,930	lbs	<u>0K</u>

